Huiying Gong , Hongxing Wang , Yu Wang , Shen Zhang , Xiang Liu , Jincan Che , Shuang Wu , Jie Wu , Xiaomei Sun , Shougong Zhang , Shing-Tung Yau , Rongling Wu
{"title":"土壤微生物群网络的拓扑变化促进全球变暖条件下的森林恢复能力","authors":"Huiying Gong , Hongxing Wang , Yu Wang , Shen Zhang , Xiang Liu , Jincan Che , Shuang Wu , Jie Wu , Xiaomei Sun , Shougong Zhang , Shing-Tung Yau , Rongling Wu","doi":"10.1016/j.plrev.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Forest management by thinning can mitigate the detrimental impact of increasing drought caused by global warming. Growing evidence shows that the soil microbiota can coordinate the dynamic relationship between forest functions and drought intensity, but how they function as a cohesive whole remains elusive. We outline a statistical topology model to chart the roadmap of how each microbe acts and interacts with every other microbe to shape the dynamic changes of microbial communities under forest management. To demonstrate its utility, we analyze a soil microbiota data collected from a two-way longitudinal factorial experiment involving three stand densities and three levels of rainfall over a growing season in artificial plantations of a forest tree – larix (<em>Larix kaempferi</em>). We reconstruct the most sophisticated soil microbiota networks that code maximally informative microbial interactions and trace their dynamic trajectories across time, space, and environmental signals. By integrating GLMY homology theory, we dissect the topological architecture of these so-called omnidirectional networks and identify key microbial interaction pathways that play a pivotal role in mediating the structure and function of soil microbial communities. The statistical topological model described provides a systems tool for studying how microbial community assembly alters its structure, function and evolution under climate change.</p></div>","PeriodicalId":403,"journal":{"name":"Physics of Life Reviews","volume":"50 ","pages":"Pages 228-251"},"PeriodicalIF":13.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological change of soil microbiota networks for forest resilience under global warming\",\"authors\":\"Huiying Gong , Hongxing Wang , Yu Wang , Shen Zhang , Xiang Liu , Jincan Che , Shuang Wu , Jie Wu , Xiaomei Sun , Shougong Zhang , Shing-Tung Yau , Rongling Wu\",\"doi\":\"10.1016/j.plrev.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forest management by thinning can mitigate the detrimental impact of increasing drought caused by global warming. Growing evidence shows that the soil microbiota can coordinate the dynamic relationship between forest functions and drought intensity, but how they function as a cohesive whole remains elusive. We outline a statistical topology model to chart the roadmap of how each microbe acts and interacts with every other microbe to shape the dynamic changes of microbial communities under forest management. To demonstrate its utility, we analyze a soil microbiota data collected from a two-way longitudinal factorial experiment involving three stand densities and three levels of rainfall over a growing season in artificial plantations of a forest tree – larix (<em>Larix kaempferi</em>). We reconstruct the most sophisticated soil microbiota networks that code maximally informative microbial interactions and trace their dynamic trajectories across time, space, and environmental signals. By integrating GLMY homology theory, we dissect the topological architecture of these so-called omnidirectional networks and identify key microbial interaction pathways that play a pivotal role in mediating the structure and function of soil microbial communities. The statistical topological model described provides a systems tool for studying how microbial community assembly alters its structure, function and evolution under climate change.</p></div>\",\"PeriodicalId\":403,\"journal\":{\"name\":\"Physics of Life Reviews\",\"volume\":\"50 \",\"pages\":\"Pages 228-251\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Life Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571064524000927\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Life Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571064524000927","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Topological change of soil microbiota networks for forest resilience under global warming
Forest management by thinning can mitigate the detrimental impact of increasing drought caused by global warming. Growing evidence shows that the soil microbiota can coordinate the dynamic relationship between forest functions and drought intensity, but how they function as a cohesive whole remains elusive. We outline a statistical topology model to chart the roadmap of how each microbe acts and interacts with every other microbe to shape the dynamic changes of microbial communities under forest management. To demonstrate its utility, we analyze a soil microbiota data collected from a two-way longitudinal factorial experiment involving three stand densities and three levels of rainfall over a growing season in artificial plantations of a forest tree – larix (Larix kaempferi). We reconstruct the most sophisticated soil microbiota networks that code maximally informative microbial interactions and trace their dynamic trajectories across time, space, and environmental signals. By integrating GLMY homology theory, we dissect the topological architecture of these so-called omnidirectional networks and identify key microbial interaction pathways that play a pivotal role in mediating the structure and function of soil microbial communities. The statistical topological model described provides a systems tool for studying how microbial community assembly alters its structure, function and evolution under climate change.
期刊介绍:
Physics of Life Reviews, published quarterly, is an international journal dedicated to review articles on the physics of living systems, complex phenomena in biological systems, and related fields including artificial life, robotics, mathematical bio-semiotics, and artificial intelligent systems. Serving as a unifying force across disciplines, the journal explores living systems comprehensively—from molecules to populations, genetics to mind, and artificial systems modeling these phenomena. Inviting reviews from actively engaged researchers, the journal seeks broad, critical, and accessible contributions that address recent progress and sometimes controversial accounts in the field.