{"title":"将亚麻废料用作聚乳酸填料以降低组件成本:对热性能和机械性能的影响","authors":"Claudia Sergi , Irene Bavasso , Giulio Frighetto , Jacopo Tirillò , Fabrizio Sarasini , Sara Casalini","doi":"10.1016/j.polymertesting.2024.108548","DOIUrl":null,"url":null,"abstract":"<div><p>Polylactic acid (PLA) is a biodegradable polymer from renewable resources with mechanical properties comparable to traditional polymers, but with a higher cost. A solution to this issue is the production of bio-based composites to partially replace the PLA matrix with industrial wastes characterized by a zero-cost, e.g., linoleum, to also valorize them in a circular economy perspective. Linoleum heterogeneous nature deriving from the simultaneous presence of lignocellulosic and inorganic fillers and oil/rosin binders, made the evaluation of matrix/filler compatibilization strategies necessary. Two approaches were considered, one from the filler perspective with NaOH and silane treatments, and the other one from the matrix perspective by adding a chain extender (C.E.). The first approach marginally improved tensile stiffness (by 1.6 %) compared to neat PLA but caused a significant decrease of 32.8 % in strength. Considering this, the costs and disposal of the chemicals and the increased environmental impact of the process, this approach was discarded. One the contrary, the introduction of C.E. does not modify the manufacturing process and increases tensile stiffness and elongation at break of 7.2 % and 415.5 % compared to neat PLA with a tolerable reduction in strength, i.e., 16.6 %, thus being a suitable way to exploit linoleum as zero-cost filler.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"138 ","pages":"Article 108548"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824002253/pdfft?md5=25bec655aac1a0971ecab66c8b74882a&pid=1-s2.0-S0142941824002253-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Linoleum waste as PLA filler for components cost reduction: Effects on the thermal and mechanical behavior\",\"authors\":\"Claudia Sergi , Irene Bavasso , Giulio Frighetto , Jacopo Tirillò , Fabrizio Sarasini , Sara Casalini\",\"doi\":\"10.1016/j.polymertesting.2024.108548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polylactic acid (PLA) is a biodegradable polymer from renewable resources with mechanical properties comparable to traditional polymers, but with a higher cost. A solution to this issue is the production of bio-based composites to partially replace the PLA matrix with industrial wastes characterized by a zero-cost, e.g., linoleum, to also valorize them in a circular economy perspective. Linoleum heterogeneous nature deriving from the simultaneous presence of lignocellulosic and inorganic fillers and oil/rosin binders, made the evaluation of matrix/filler compatibilization strategies necessary. Two approaches were considered, one from the filler perspective with NaOH and silane treatments, and the other one from the matrix perspective by adding a chain extender (C.E.). The first approach marginally improved tensile stiffness (by 1.6 %) compared to neat PLA but caused a significant decrease of 32.8 % in strength. Considering this, the costs and disposal of the chemicals and the increased environmental impact of the process, this approach was discarded. One the contrary, the introduction of C.E. does not modify the manufacturing process and increases tensile stiffness and elongation at break of 7.2 % and 415.5 % compared to neat PLA with a tolerable reduction in strength, i.e., 16.6 %, thus being a suitable way to exploit linoleum as zero-cost filler.</p></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"138 \",\"pages\":\"Article 108548\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002253/pdfft?md5=25bec655aac1a0971ecab66c8b74882a&pid=1-s2.0-S0142941824002253-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002253\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002253","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Linoleum waste as PLA filler for components cost reduction: Effects on the thermal and mechanical behavior
Polylactic acid (PLA) is a biodegradable polymer from renewable resources with mechanical properties comparable to traditional polymers, but with a higher cost. A solution to this issue is the production of bio-based composites to partially replace the PLA matrix with industrial wastes characterized by a zero-cost, e.g., linoleum, to also valorize them in a circular economy perspective. Linoleum heterogeneous nature deriving from the simultaneous presence of lignocellulosic and inorganic fillers and oil/rosin binders, made the evaluation of matrix/filler compatibilization strategies necessary. Two approaches were considered, one from the filler perspective with NaOH and silane treatments, and the other one from the matrix perspective by adding a chain extender (C.E.). The first approach marginally improved tensile stiffness (by 1.6 %) compared to neat PLA but caused a significant decrease of 32.8 % in strength. Considering this, the costs and disposal of the chemicals and the increased environmental impact of the process, this approach was discarded. One the contrary, the introduction of C.E. does not modify the manufacturing process and increases tensile stiffness and elongation at break of 7.2 % and 415.5 % compared to neat PLA with a tolerable reduction in strength, i.e., 16.6 %, thus being a suitable way to exploit linoleum as zero-cost filler.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.