{"title":"在带隙上训练机器学习密度函数。","authors":"Kyle Bystrom, Stefano Falletta, Boris Kozinsky","doi":"10.1021/acs.jctc.4c00999","DOIUrl":null,"url":null,"abstract":"<p><p>The systematic underestimation of band gaps is one of the most fundamental challenges in semilocal density functional theory (DFT). In addition to hindering the application of DFT to predicting electronic properties, the band gap problem is intimately related to self-interaction and delocalization errors, which make the study of charge transfer mechanisms with DFT difficult. To expand the range of available tools for addressing the band gap problem, we design an approach for machine learning density functionals based on Gaussian processes to explicitly fit single-particle energy levels. We also introduce nonlocal features of the density matrix that are expressive enough to fit these single-particle levels. Combining these developments, we train a machine-learned functional for the exact exchange energy that predicts molecular energy gaps and reaction energies of a wide range of molecules in excellent agreement with reference hybrid DFT calculations. In addition, while being trained solely on molecular data, our model predicts reasonable formation energies of polarons in solids, showcasing its transferability and robustness. We discuss how this approach can be generalized to full exchange-correlation functionals, thus paving the way to the design of state-of-the-art functionals for the prediction of electronic properties of molecules and materials.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training Machine-Learned Density Functionals on Band Gaps.\",\"authors\":\"Kyle Bystrom, Stefano Falletta, Boris Kozinsky\",\"doi\":\"10.1021/acs.jctc.4c00999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The systematic underestimation of band gaps is one of the most fundamental challenges in semilocal density functional theory (DFT). In addition to hindering the application of DFT to predicting electronic properties, the band gap problem is intimately related to self-interaction and delocalization errors, which make the study of charge transfer mechanisms with DFT difficult. To expand the range of available tools for addressing the band gap problem, we design an approach for machine learning density functionals based on Gaussian processes to explicitly fit single-particle energy levels. We also introduce nonlocal features of the density matrix that are expressive enough to fit these single-particle levels. Combining these developments, we train a machine-learned functional for the exact exchange energy that predicts molecular energy gaps and reaction energies of a wide range of molecules in excellent agreement with reference hybrid DFT calculations. In addition, while being trained solely on molecular data, our model predicts reasonable formation energies of polarons in solids, showcasing its transferability and robustness. We discuss how this approach can be generalized to full exchange-correlation functionals, thus paving the way to the design of state-of-the-art functionals for the prediction of electronic properties of molecules and materials.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00999\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00999","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Training Machine-Learned Density Functionals on Band Gaps.
The systematic underestimation of band gaps is one of the most fundamental challenges in semilocal density functional theory (DFT). In addition to hindering the application of DFT to predicting electronic properties, the band gap problem is intimately related to self-interaction and delocalization errors, which make the study of charge transfer mechanisms with DFT difficult. To expand the range of available tools for addressing the band gap problem, we design an approach for machine learning density functionals based on Gaussian processes to explicitly fit single-particle energy levels. We also introduce nonlocal features of the density matrix that are expressive enough to fit these single-particle levels. Combining these developments, we train a machine-learned functional for the exact exchange energy that predicts molecular energy gaps and reaction energies of a wide range of molecules in excellent agreement with reference hybrid DFT calculations. In addition, while being trained solely on molecular data, our model predicts reasonable formation energies of polarons in solids, showcasing its transferability and robustness. We discuss how this approach can be generalized to full exchange-correlation functionals, thus paving the way to the design of state-of-the-art functionals for the prediction of electronic properties of molecules and materials.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.