足迹极小的大型量子字母表

IF 20.6 Q1 OPTICS
Fazilah Nothlawala, Andrew Forbes
{"title":"足迹极小的大型量子字母表","authors":"Fazilah Nothlawala, Andrew Forbes","doi":"10.1038/s41377-024-01550-x","DOIUrl":null,"url":null,"abstract":"<p>High-dimensional quantum states are known to offer advantages over their two-dimensional qubit counterparts, but their preparation and manipulation has been bulky and cumbersome. Now, quantum state control has been demonstrated on-chip with a ~1 μm<sup>2</sup> footprint and nm-scale features, producing up to eight-dimensional quantum states and ushering in a new route to large quantum information encoding on a small footprint.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large quantum alphabets with a tiny footprint\",\"authors\":\"Fazilah Nothlawala, Andrew Forbes\",\"doi\":\"10.1038/s41377-024-01550-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-dimensional quantum states are known to offer advantages over their two-dimensional qubit counterparts, but their preparation and manipulation has been bulky and cumbersome. Now, quantum state control has been demonstrated on-chip with a ~1 μm<sup>2</sup> footprint and nm-scale features, producing up to eight-dimensional quantum states and ushering in a new route to large quantum information encoding on a small footprint.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01550-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01550-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

与二维量子比特相比,高维量子态具有众所周知的优势,但其制备和操作却一直十分笨重和繁琐。现在,量子态控制已在芯片上实现,只需约 1 μm2 的基底面和纳米级的特征,就能产生多达八维的量子态,开辟了在小基底面上进行大量子信息编码的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large quantum alphabets with a tiny footprint

Large quantum alphabets with a tiny footprint

High-dimensional quantum states are known to offer advantages over their two-dimensional qubit counterparts, but their preparation and manipulation has been bulky and cumbersome. Now, quantum state control has been demonstrated on-chip with a ~1 μm2 footprint and nm-scale features, producing up to eight-dimensional quantum states and ushering in a new route to large quantum information encoding on a small footprint.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信