{"title":"利用麻风树油生产生物柴油的工程生物质废弃物衍生活性生物炭催化剂","authors":"Supongsenla Ao, Sudeshna Ghorui, Hui Li, Gurunathan Baskar, Samuel Lalthazuala Rokhum","doi":"10.1155/2024/2406135","DOIUrl":null,"url":null,"abstract":"<div>\n <p>ZnCl<sub>2</sub> impregnation of the cellulosic precursor is an effective way to generate carbon catalysts with a mesoporous structure and high specific surface area. Herein, we attempt to explore the synthesis of <i>Citrus Limonum Pericarpium</i> (lemon peel), an activated biochar catalyst produced via pyrolysis and consequent sulfonation. The obtained biochar catalyst exhibited notable characteristics, including a high surface area of 863.0 m<sup>2</sup> g<sup>−1</sup> and a substantial sulfur content of 4.02 wt.% (1.25 mmol g<sup>−1</sup>) by EDX. Following, analytical techniques, such as scanning electron microscopy, BET, X-ray diffraction, Fourier-transform infrared, and TGA, were conducted for a comprehensive analysis of the catalyst. Subsequently, we applied the catalyst to optimize the transesterification process of <i>Jatropha curcas</i> oil (JCO), yielding an impressive 95.2% ± 0.4% yield. The optimization parameters were established with a reaction duration of 60 min, a temperature of 100°C, 8 wt.% catalyst, and JCO: MeOH ratio of 1 : 20. Catalyst reusability was probed over seven subsequent cycles with the final yield observed of over 88.4% ± 0.6%, while the decrease in yield was explained by EDX analysis. In summary, our investigation successfully navigated the synthesis and practical application of a sulfonated porous biochar catalyst for JCO transesterification, achieving noteworthy yields while addressing environmental concerns.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2406135","citationCount":"0","resultStr":"{\"title\":\"Engineered Biomass Waste-Derived Activated Biochar Catalyst for Biodiesel Production from Jatropha curcas Oil\",\"authors\":\"Supongsenla Ao, Sudeshna Ghorui, Hui Li, Gurunathan Baskar, Samuel Lalthazuala Rokhum\",\"doi\":\"10.1155/2024/2406135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>ZnCl<sub>2</sub> impregnation of the cellulosic precursor is an effective way to generate carbon catalysts with a mesoporous structure and high specific surface area. Herein, we attempt to explore the synthesis of <i>Citrus Limonum Pericarpium</i> (lemon peel), an activated biochar catalyst produced via pyrolysis and consequent sulfonation. The obtained biochar catalyst exhibited notable characteristics, including a high surface area of 863.0 m<sup>2</sup> g<sup>−1</sup> and a substantial sulfur content of 4.02 wt.% (1.25 mmol g<sup>−1</sup>) by EDX. Following, analytical techniques, such as scanning electron microscopy, BET, X-ray diffraction, Fourier-transform infrared, and TGA, were conducted for a comprehensive analysis of the catalyst. Subsequently, we applied the catalyst to optimize the transesterification process of <i>Jatropha curcas</i> oil (JCO), yielding an impressive 95.2% ± 0.4% yield. The optimization parameters were established with a reaction duration of 60 min, a temperature of 100°C, 8 wt.% catalyst, and JCO: MeOH ratio of 1 : 20. Catalyst reusability was probed over seven subsequent cycles with the final yield observed of over 88.4% ± 0.6%, while the decrease in yield was explained by EDX analysis. In summary, our investigation successfully navigated the synthesis and practical application of a sulfonated porous biochar catalyst for JCO transesterification, achieving noteworthy yields while addressing environmental concerns.</p>\\n </div>\",\"PeriodicalId\":14051,\"journal\":{\"name\":\"International Journal of Energy Research\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2406135\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/2406135\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2406135","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Engineered Biomass Waste-Derived Activated Biochar Catalyst for Biodiesel Production from Jatropha curcas Oil
ZnCl2 impregnation of the cellulosic precursor is an effective way to generate carbon catalysts with a mesoporous structure and high specific surface area. Herein, we attempt to explore the synthesis of Citrus Limonum Pericarpium (lemon peel), an activated biochar catalyst produced via pyrolysis and consequent sulfonation. The obtained biochar catalyst exhibited notable characteristics, including a high surface area of 863.0 m2 g−1 and a substantial sulfur content of 4.02 wt.% (1.25 mmol g−1) by EDX. Following, analytical techniques, such as scanning electron microscopy, BET, X-ray diffraction, Fourier-transform infrared, and TGA, were conducted for a comprehensive analysis of the catalyst. Subsequently, we applied the catalyst to optimize the transesterification process of Jatropha curcas oil (JCO), yielding an impressive 95.2% ± 0.4% yield. The optimization parameters were established with a reaction duration of 60 min, a temperature of 100°C, 8 wt.% catalyst, and JCO: MeOH ratio of 1 : 20. Catalyst reusability was probed over seven subsequent cycles with the final yield observed of over 88.4% ± 0.6%, while the decrease in yield was explained by EDX analysis. In summary, our investigation successfully navigated the synthesis and practical application of a sulfonated porous biochar catalyst for JCO transesterification, achieving noteworthy yields while addressing environmental concerns.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system