用于电动汽车的高性能单相双向新型车载充电器

Energy Storage Pub Date : 2024-08-21 DOI:10.1002/est2.70014
Md Inayat Ali, Rajib Mandal, Amitesh Kumar
{"title":"用于电动汽车的高性能单相双向新型车载充电器","authors":"Md Inayat Ali,&nbsp;Rajib Mandal,&nbsp;Amitesh Kumar","doi":"10.1002/est2.70014","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The design and development of a 550 W non-isolated single-phase two-stage level-1 bidirectional on-board battery charger (OBC) for electric vehicles (EVs) have been discussed in this article, which is also capable of supplying the utility grid's reactive power needs. There are two stages in this topology. The first stage consists of a full bridge bidirectional AC to DC converter, and the second stage consists of a half-bridge bidirectional DC to DC converter with enhanced vehicle-to-vehicle (V2V) capabilities for emergency roadside charging assistance scenarios. In an emergency, if there is not a charging station nearby and the battery is dead, EVs can use this feature to charge from other EVs. It can also work like a regular vehicle-to-grid (V2G) or grid-to-vehicle (G2V) system. The suggested charging topology has a maximum efficiency of 99.09%, a power factor of 0.99, and a total harmonic distortion (THD) of 6.31%. MATLAB/Simulink is used to develop and simulate the suggested EV charger, and simulation results are compared with the other on-board chargers in the literature.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance Single-Phase Bi-Directional Novel On-Board Charger for Electric Vehicles\",\"authors\":\"Md Inayat Ali,&nbsp;Rajib Mandal,&nbsp;Amitesh Kumar\",\"doi\":\"10.1002/est2.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The design and development of a 550 W non-isolated single-phase two-stage level-1 bidirectional on-board battery charger (OBC) for electric vehicles (EVs) have been discussed in this article, which is also capable of supplying the utility grid's reactive power needs. There are two stages in this topology. The first stage consists of a full bridge bidirectional AC to DC converter, and the second stage consists of a half-bridge bidirectional DC to DC converter with enhanced vehicle-to-vehicle (V2V) capabilities for emergency roadside charging assistance scenarios. In an emergency, if there is not a charging station nearby and the battery is dead, EVs can use this feature to charge from other EVs. It can also work like a regular vehicle-to-grid (V2G) or grid-to-vehicle (G2V) system. The suggested charging topology has a maximum efficiency of 99.09%, a power factor of 0.99, and a total harmonic distortion (THD) of 6.31%. MATLAB/Simulink is used to develop and simulate the suggested EV charger, and simulation results are compared with the other on-board chargers in the literature.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了用于电动汽车(EV)的 550 W 非隔离单相两级一级双向车载电池充电器(OBC)的设计和开发,该充电器还能满足公用电网的无功功率需求。该拓扑结构分为两个阶段。第一阶段由全桥双向交流到直流转换器组成,第二阶段由半桥双向直流到直流转换器组成,具有增强的车对车(V2V)功能,适用于紧急路边充电援助场景。在紧急情况下,如果附近没有充电站,而电池又没电了,电动汽车可以利用这一功能从其他电动汽车上充电。它也可以像普通的车对网(V2G)或网对车(G2V)系统一样工作。建议的充电拓扑结构的最高效率为 99.09%,功率因数为 0.99,总谐波失真 (THD) 为 6.31%。我们使用 MATLAB/Simulink 对建议的电动汽车充电器进行了开发和仿真,并将仿真结果与文献中的其他车载充电器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Performance Single-Phase Bi-Directional Novel On-Board Charger for Electric Vehicles

The design and development of a 550 W non-isolated single-phase two-stage level-1 bidirectional on-board battery charger (OBC) for electric vehicles (EVs) have been discussed in this article, which is also capable of supplying the utility grid's reactive power needs. There are two stages in this topology. The first stage consists of a full bridge bidirectional AC to DC converter, and the second stage consists of a half-bridge bidirectional DC to DC converter with enhanced vehicle-to-vehicle (V2V) capabilities for emergency roadside charging assistance scenarios. In an emergency, if there is not a charging station nearby and the battery is dead, EVs can use this feature to charge from other EVs. It can also work like a regular vehicle-to-grid (V2G) or grid-to-vehicle (G2V) system. The suggested charging topology has a maximum efficiency of 99.09%, a power factor of 0.99, and a total harmonic distortion (THD) of 6.31%. MATLAB/Simulink is used to develop and simulate the suggested EV charger, and simulation results are compared with the other on-board chargers in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信