运动型和非运动型大肠杆菌菌株在复苏过程中对稳定的超细金纳米系统的不同反应

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY
Anindita Thakur, Pranay Amruth Maroju, Ramakrishnan Ganesan, Jayati Ray Dutta
{"title":"运动型和非运动型大肠杆菌菌株在复苏过程中对稳定的超细金纳米系统的不同反应","authors":"Anindita Thakur,&nbsp;Pranay Amruth Maroju,&nbsp;Ramakrishnan Ganesan,&nbsp;Jayati Ray Dutta","doi":"10.1186/s40486-024-00206-0","DOIUrl":null,"url":null,"abstract":"<div><p>Global public health confronts a pressing challenge in antimicrobial resistance (AMR), necessitating urgent intervention strategies due to the low success rate of new antibiotic development. Bacterial motility, beyond conventional antibiotic usage, significantly influences resistance evolution and ecological dynamics. Our recent study marks a breakthrough, revealing the unexplored ability of ultrafine gold nanosystems (UGNs) to inhibit bacterial resuscitation using a motile <i>Escherichia coli</i> (<i>E.coli</i>) K12 strain. We aim to deepen our comparative understanding of UGNs’ efficacy and resuscitation propensity against a non-motile <i>E. coli</i> K12 strain to assess the role of motility. Through UGN application, we identified heritable resistance in both strains, with motile strains exhibiting notably higher mutation rates. Resuscitation experiments unveiled faster recovery in motile strains, attributable to virulence factors, compared to non-motile strains. Additionally, our investigation into aggregation dynamics highlighted the role of protein-mediated aggregation in resistance development to nano-antimicrobials. Overall, the study reveals that the non-motile strains are more susceptible against UGNs, which shows promise in combating AMR.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"12 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00206-0","citationCount":"0","resultStr":"{\"title\":\"Contrasting responses of motile and non-motile Escherichia coli strains in resuscitation against stable ultrafine gold nanosystems\",\"authors\":\"Anindita Thakur,&nbsp;Pranay Amruth Maroju,&nbsp;Ramakrishnan Ganesan,&nbsp;Jayati Ray Dutta\",\"doi\":\"10.1186/s40486-024-00206-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global public health confronts a pressing challenge in antimicrobial resistance (AMR), necessitating urgent intervention strategies due to the low success rate of new antibiotic development. Bacterial motility, beyond conventional antibiotic usage, significantly influences resistance evolution and ecological dynamics. Our recent study marks a breakthrough, revealing the unexplored ability of ultrafine gold nanosystems (UGNs) to inhibit bacterial resuscitation using a motile <i>Escherichia coli</i> (<i>E.coli</i>) K12 strain. We aim to deepen our comparative understanding of UGNs’ efficacy and resuscitation propensity against a non-motile <i>E. coli</i> K12 strain to assess the role of motility. Through UGN application, we identified heritable resistance in both strains, with motile strains exhibiting notably higher mutation rates. Resuscitation experiments unveiled faster recovery in motile strains, attributable to virulence factors, compared to non-motile strains. Additionally, our investigation into aggregation dynamics highlighted the role of protein-mediated aggregation in resistance development to nano-antimicrobials. Overall, the study reveals that the non-motile strains are more susceptible against UGNs, which shows promise in combating AMR.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00206-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-024-00206-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-024-00206-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球公共卫生面临着抗菌药耐药性(AMR)的紧迫挑战,由于新抗生素开发的成功率很低,因此必须采取紧急干预策略。除了传统的抗生素使用外,细菌的运动性也对耐药性的进化和生态动态产生了重大影响。我们最近的研究取得了突破性进展,利用大肠杆菌(E.coli)K12运动菌株揭示了超细金纳米系统(UGNs)抑制细菌复苏的未知能力。我们的目的是加深对 UGNs 对非运动性大肠杆菌 K12 菌株的疗效和复苏倾向的比较理解,以评估运动性的作用。通过 UGN 的应用,我们在两种菌株中都发现了遗传抗性,其中运动菌株的突变率明显更高。复苏实验显示,与非运动菌株相比,运动菌株的恢复速度更快,这归因于毒力因子。此外,我们对聚集动力学的研究还强调了蛋白质介导的聚集在纳米抗菌药耐药性发展过程中的作用。总之,研究表明,非运动菌株对 UGNs 更易产生抗药性,这为抗击 AMR 带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrasting responses of motile and non-motile Escherichia coli strains in resuscitation against stable ultrafine gold nanosystems

Global public health confronts a pressing challenge in antimicrobial resistance (AMR), necessitating urgent intervention strategies due to the low success rate of new antibiotic development. Bacterial motility, beyond conventional antibiotic usage, significantly influences resistance evolution and ecological dynamics. Our recent study marks a breakthrough, revealing the unexplored ability of ultrafine gold nanosystems (UGNs) to inhibit bacterial resuscitation using a motile Escherichia coli (E.coli) K12 strain. We aim to deepen our comparative understanding of UGNs’ efficacy and resuscitation propensity against a non-motile E. coli K12 strain to assess the role of motility. Through UGN application, we identified heritable resistance in both strains, with motile strains exhibiting notably higher mutation rates. Resuscitation experiments unveiled faster recovery in motile strains, attributable to virulence factors, compared to non-motile strains. Additionally, our investigation into aggregation dynamics highlighted the role of protein-mediated aggregation in resistance development to nano-antimicrobials. Overall, the study reveals that the non-motile strains are more susceptible against UGNs, which shows promise in combating AMR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信