微波乳腺筛查中的表面波和背辐射抑制

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Milad Mokhtari;Milica Popović
{"title":"微波乳腺筛查中的表面波和背辐射抑制","authors":"Milad Mokhtari;Milica Popović","doi":"10.1109/JERM.2024.3385335","DOIUrl":null,"url":null,"abstract":"The challenges in antenna design for microwave-based breast screening systems identify two distinct needs: 1) to minimize the surface-wave propagation at the interface between the substrate and the tissue, and 2) to address the back-radiation. These surface waves become more noticeable within the substrate, particularly when a confining ground plane is present, and yet the ground plane is pivotal for achieving unidirectionality and shielding against environmental radiation. This paper introduces a simplified human breast model and offers a quantitative analysis of existing surface waves. We then propose a 16-antenna array of cavity-backed patch antennas with parasitic elements, designed for operation in the 3.1–5.1 GHz range. Each antenna element is optimized to function seamlessly alongside the breast tissue. Full-wave simulations illustrate that the proposed antenna array achieves superior unidirectionality and diminished mutual coupling levels when compared to its predecessor. We further outline the cost-effective fabrication method that employs the SYLGARD(TM) 184 silicone elastomer PDMS kit. The measurements from the fabricated antenna elements are consistent with the results of the full-wave simulations.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Wave and Back Radiation Suppression in Microwave Breast Screening\",\"authors\":\"Milad Mokhtari;Milica Popović\",\"doi\":\"10.1109/JERM.2024.3385335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenges in antenna design for microwave-based breast screening systems identify two distinct needs: 1) to minimize the surface-wave propagation at the interface between the substrate and the tissue, and 2) to address the back-radiation. These surface waves become more noticeable within the substrate, particularly when a confining ground plane is present, and yet the ground plane is pivotal for achieving unidirectionality and shielding against environmental radiation. This paper introduces a simplified human breast model and offers a quantitative analysis of existing surface waves. We then propose a 16-antenna array of cavity-backed patch antennas with parasitic elements, designed for operation in the 3.1–5.1 GHz range. Each antenna element is optimized to function seamlessly alongside the breast tissue. Full-wave simulations illustrate that the proposed antenna array achieves superior unidirectionality and diminished mutual coupling levels when compared to its predecessor. We further outline the cost-effective fabrication method that employs the SYLGARD(TM) 184 silicone elastomer PDMS kit. The measurements from the fabricated antenna elements are consistent with the results of the full-wave simulations.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10498069/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10498069/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

微波乳腺筛查系统的天线设计面临着两个不同的挑战:1) 尽量减少基底和组织界面的表面波传播,以及 2) 解决背辐射问题。这些表面波在基底内会变得更加明显,尤其是当存在限制性地平面时,然而地平面对于实现单向性和屏蔽环境辐射至关重要。本文介绍了一个简化的人体乳房模型,并对现有的表面波进行了定量分析。然后,我们提出了一种带有寄生元件的 16 天线阵列空腔贴片天线,设计工作频率为 3.1-5.1 GHz。每个天线元件都经过优化,可与乳腺组织无缝连接。全波仿真表明,与前代产品相比,拟议的天线阵列实现了出色的单向性,并降低了相互耦合水平。我们进一步概述了采用 SYLGARD(TM) 184 硅弹性体 PDMS 套件的高性价比制造方法。天线元件的测量结果与全波仿真结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface Wave and Back Radiation Suppression in Microwave Breast Screening
The challenges in antenna design for microwave-based breast screening systems identify two distinct needs: 1) to minimize the surface-wave propagation at the interface between the substrate and the tissue, and 2) to address the back-radiation. These surface waves become more noticeable within the substrate, particularly when a confining ground plane is present, and yet the ground plane is pivotal for achieving unidirectionality and shielding against environmental radiation. This paper introduces a simplified human breast model and offers a quantitative analysis of existing surface waves. We then propose a 16-antenna array of cavity-backed patch antennas with parasitic elements, designed for operation in the 3.1–5.1 GHz range. Each antenna element is optimized to function seamlessly alongside the breast tissue. Full-wave simulations illustrate that the proposed antenna array achieves superior unidirectionality and diminished mutual coupling levels when compared to its predecessor. We further outline the cost-effective fabrication method that employs the SYLGARD(TM) 184 silicone elastomer PDMS kit. The measurements from the fabricated antenna elements are consistent with the results of the full-wave simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信