具有 Dzyaloshinskii-Moriya 相互作用的薄膜微磁学中边界涡之间的重正化能量

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Radu Ignat , François L’Official
{"title":"具有 Dzyaloshinskii-Moriya 相互作用的薄膜微磁学中边界涡之间的重正化能量","authors":"Radu Ignat ,&nbsp;François L’Official","doi":"10.1016/j.na.2024.113622","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a three-dimensional micromagnetic model with Dzyaloshinskii-Moriya interaction in a thin-film regime for boundary vortices. In this regime, we prove a dimension reduction result: the nonlocal three-dimensional model reduces to a local two-dimensional Ginzburg–Landau type model in terms of the averaged magnetisation in the thickness of the film. This reduced model captures the interaction between boundary vortices (so-called renormalised energy), that we determine by a <span><math><mi>Γ</mi></math></span>-convergence result at the second order and then we analyse its minimisers. They nucleate two boundary vortices whose position depends on the Dzyaloshinskii-Moriya interaction.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X2400141X/pdfft?md5=909aaa9112d6eb58c619099b93d70d70&pid=1-s2.0-S0362546X2400141X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Renormalised energy between boundary vortices in thin-film micromagnetics with Dzyaloshinskii-Moriya interaction\",\"authors\":\"Radu Ignat ,&nbsp;François L’Official\",\"doi\":\"10.1016/j.na.2024.113622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a three-dimensional micromagnetic model with Dzyaloshinskii-Moriya interaction in a thin-film regime for boundary vortices. In this regime, we prove a dimension reduction result: the nonlocal three-dimensional model reduces to a local two-dimensional Ginzburg–Landau type model in terms of the averaged magnetisation in the thickness of the film. This reduced model captures the interaction between boundary vortices (so-called renormalised energy), that we determine by a <span><math><mi>Γ</mi></math></span>-convergence result at the second order and then we analyse its minimisers. They nucleate two boundary vortices whose position depends on the Dzyaloshinskii-Moriya interaction.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0362546X2400141X/pdfft?md5=909aaa9112d6eb58c619099b93d70d70&pid=1-s2.0-S0362546X2400141X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X2400141X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X2400141X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在薄膜状态下边界旋涡与 Dzyaloshinskii-Moriya 相互作用的三维微磁模型。在这种情况下,我们证明了一个降维结果:根据薄膜厚度内的平均磁化率,非局部三维模型可降至局部二维金兹堡-朗道型模型。这个简化模型捕捉了边界涡旋之间的相互作用(即所谓的重正化能量),我们通过二阶的Γ-收敛结果来确定这种相互作用,然后分析其最小值。它们核化了两个边界涡旋,其位置取决于 Dzyaloshinskii-Moriya 相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Renormalised energy between boundary vortices in thin-film micromagnetics with Dzyaloshinskii-Moriya interaction

We consider a three-dimensional micromagnetic model with Dzyaloshinskii-Moriya interaction in a thin-film regime for boundary vortices. In this regime, we prove a dimension reduction result: the nonlocal three-dimensional model reduces to a local two-dimensional Ginzburg–Landau type model in terms of the averaged magnetisation in the thickness of the film. This reduced model captures the interaction between boundary vortices (so-called renormalised energy), that we determine by a Γ-convergence result at the second order and then we analyse its minimisers. They nucleate two boundary vortices whose position depends on the Dzyaloshinskii-Moriya interaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信