{"title":"胶体镁/铝层状双氢氧化物纳米粒子快速高效萃取铬(VI)","authors":"Abdelhak Fezraoui, Damien Cornu, Marc Hébrant","doi":"10.1016/j.clay.2024.107536","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the constraints associated with diffusion and mixing time, traditional kinetic and thermodynamic approaches were inadequate for probing the true mechanism of interaction between chromate and Layered Double Hydroxide (LDH). To circumvent these limitations, colloidal suspensions of Mg/Al-NO<sub>3</sub> LDH, characterized by a positively charged surface (approximately +50 mV) in ultrapure water and a mean average diameter of 140 nm, allowing the formation of stable suspensions for days, were swiftly mixed with Cr(VI) suspensions at both pH = 4 and 9 using a stopped flow technique. This rapid mixing, accomplished in <5 milliseconds, enabled the examination of the initial stages of interaction between the toxic anion and the host compound. Two distinct steps in the adsorption process were identified: a very fast step (completed in <5 ms), representing up to 80% of the measured variation, and a slower step lasting up to 100 s. The fast step assumed to be driven by electrostatic interaction (ζ ∼ +50 mV) with the surface, and sites close to the surface are easily accessible to the chromate anions. The slower step corresponded to a diffusion process close or inside the particles. Chromate extraction efficiency was investigated through ultrafiltration tests, varying the LDH and chromate amounts, indicating that 2 nitrate ions are exchanged for 1 chromate, regardless of the pH considered, and a total exchange can be fulfilled with 0.1 g L<sup>−1</sup> of LDH within the explored concentration range.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"260 ","pages":"Article 107536"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and efficient chromium(VI) extraction by colloidal Mg/Al layered double hydroxide nanoparticles\",\"authors\":\"Abdelhak Fezraoui, Damien Cornu, Marc Hébrant\",\"doi\":\"10.1016/j.clay.2024.107536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the constraints associated with diffusion and mixing time, traditional kinetic and thermodynamic approaches were inadequate for probing the true mechanism of interaction between chromate and Layered Double Hydroxide (LDH). To circumvent these limitations, colloidal suspensions of Mg/Al-NO<sub>3</sub> LDH, characterized by a positively charged surface (approximately +50 mV) in ultrapure water and a mean average diameter of 140 nm, allowing the formation of stable suspensions for days, were swiftly mixed with Cr(VI) suspensions at both pH = 4 and 9 using a stopped flow technique. This rapid mixing, accomplished in <5 milliseconds, enabled the examination of the initial stages of interaction between the toxic anion and the host compound. Two distinct steps in the adsorption process were identified: a very fast step (completed in <5 ms), representing up to 80% of the measured variation, and a slower step lasting up to 100 s. The fast step assumed to be driven by electrostatic interaction (ζ ∼ +50 mV) with the surface, and sites close to the surface are easily accessible to the chromate anions. The slower step corresponded to a diffusion process close or inside the particles. Chromate extraction efficiency was investigated through ultrafiltration tests, varying the LDH and chromate amounts, indicating that 2 nitrate ions are exchanged for 1 chromate, regardless of the pH considered, and a total exchange can be fulfilled with 0.1 g L<sup>−1</sup> of LDH within the explored concentration range.</p></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"260 \",\"pages\":\"Article 107536\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131724002849\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724002849","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fast and efficient chromium(VI) extraction by colloidal Mg/Al layered double hydroxide nanoparticles
Due to the constraints associated with diffusion and mixing time, traditional kinetic and thermodynamic approaches were inadequate for probing the true mechanism of interaction between chromate and Layered Double Hydroxide (LDH). To circumvent these limitations, colloidal suspensions of Mg/Al-NO3 LDH, characterized by a positively charged surface (approximately +50 mV) in ultrapure water and a mean average diameter of 140 nm, allowing the formation of stable suspensions for days, were swiftly mixed with Cr(VI) suspensions at both pH = 4 and 9 using a stopped flow technique. This rapid mixing, accomplished in <5 milliseconds, enabled the examination of the initial stages of interaction between the toxic anion and the host compound. Two distinct steps in the adsorption process were identified: a very fast step (completed in <5 ms), representing up to 80% of the measured variation, and a slower step lasting up to 100 s. The fast step assumed to be driven by electrostatic interaction (ζ ∼ +50 mV) with the surface, and sites close to the surface are easily accessible to the chromate anions. The slower step corresponded to a diffusion process close or inside the particles. Chromate extraction efficiency was investigated through ultrafiltration tests, varying the LDH and chromate amounts, indicating that 2 nitrate ions are exchanged for 1 chromate, regardless of the pH considered, and a total exchange can be fulfilled with 0.1 g L−1 of LDH within the explored concentration range.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...