使用田口、方差分析和 TOPSIS 方法对 EN19 钢铣削参数进行多目标优化

Pankaj Krishnath Jadhav , R.S.N. Sahai , Sachin Solanke , S.H. Gawande
{"title":"使用田口、方差分析和 TOPSIS 方法对 EN19 钢铣削参数进行多目标优化","authors":"Pankaj Krishnath Jadhav ,&nbsp;R.S.N. Sahai ,&nbsp;Sachin Solanke ,&nbsp;S.H. Gawande","doi":"10.1016/j.jalmes.2024.100102","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on optimizing milling parameters for EN19 steel through the Taguchi method. Utilizing an L9 orthogonal array with three parameters each set at three levels, the study evaluated four quality characteristics in every run. The optimization process involved the use of Signal-to-Noise Ratio (SNR), Analysis of Variance (ANOVA), and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to determine optimal conditions and identify critical parameters influencing surface roughness, temperature, cutting force, and material removal rate.</p><p>ANOVA results underscore the significant impact of spindle speed, cutting fluids, and depth of cut (DOC). The TOPSIS analysis identified the optimal conditions as a spindle speed of 710 rpm, a DOC of 0.5 mm, and the use of Neem oil combined with graphene as the cutting fluid. Among these factors, the depth of cut was found to be the most influential, followed by spindle speed and cutting fluid. Confirmation tests corroborated the effectiveness of the optimization approach, affirming its potential to improve milling outcomes. This research offers valuable insights into enhancing machining efficiency and product quality in the milling of EN19 steel.</p></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"7 ","pages":"Article 100102"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294991782400049X/pdfft?md5=3b7cd69787361c224485535bbd3dd435&pid=1-s2.0-S294991782400049X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of EN19 steel milling parameters using Taguchi, ANOVA, and TOPSIS approaches\",\"authors\":\"Pankaj Krishnath Jadhav ,&nbsp;R.S.N. Sahai ,&nbsp;Sachin Solanke ,&nbsp;S.H. Gawande\",\"doi\":\"10.1016/j.jalmes.2024.100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on optimizing milling parameters for EN19 steel through the Taguchi method. Utilizing an L9 orthogonal array with three parameters each set at three levels, the study evaluated four quality characteristics in every run. The optimization process involved the use of Signal-to-Noise Ratio (SNR), Analysis of Variance (ANOVA), and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to determine optimal conditions and identify critical parameters influencing surface roughness, temperature, cutting force, and material removal rate.</p><p>ANOVA results underscore the significant impact of spindle speed, cutting fluids, and depth of cut (DOC). The TOPSIS analysis identified the optimal conditions as a spindle speed of 710 rpm, a DOC of 0.5 mm, and the use of Neem oil combined with graphene as the cutting fluid. Among these factors, the depth of cut was found to be the most influential, followed by spindle speed and cutting fluid. Confirmation tests corroborated the effectiveness of the optimization approach, affirming its potential to improve milling outcomes. This research offers valuable insights into enhancing machining efficiency and product quality in the milling of EN19 steel.</p></div>\",\"PeriodicalId\":100753,\"journal\":{\"name\":\"Journal of Alloys and Metallurgical Systems\",\"volume\":\"7 \",\"pages\":\"Article 100102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294991782400049X/pdfft?md5=3b7cd69787361c224485535bbd3dd435&pid=1-s2.0-S294991782400049X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Metallurgical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294991782400049X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294991782400049X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是通过田口方法优化 EN19 钢的铣削参数。该研究利用 L9 正交阵列,每个阵列设置三个参数,每个参数设置三个水平,在每次运行中评估四个质量特性。优化过程包括使用信噪比 (SNR)、方差分析 (ANOVA) 和理想解相似度排序技术 (TOPSIS),以确定最佳条件,并识别影响表面粗糙度、温度、切削力和材料去除率的关键参数。TOPSIS 分析确定的最佳条件是主轴转速为 710 rpm,DOC 为 0.5 mm,切削液使用楝树油和石墨烯。在这些因素中,切削深度的影响最大,其次是主轴转速和切削液。确认测试证实了优化方法的有效性,肯定了其改善铣削结果的潜力。这项研究为提高 EN19 钢铣削加工效率和产品质量提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective optimization of EN19 steel milling parameters using Taguchi, ANOVA, and TOPSIS approaches

This study focuses on optimizing milling parameters for EN19 steel through the Taguchi method. Utilizing an L9 orthogonal array with three parameters each set at three levels, the study evaluated four quality characteristics in every run. The optimization process involved the use of Signal-to-Noise Ratio (SNR), Analysis of Variance (ANOVA), and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to determine optimal conditions and identify critical parameters influencing surface roughness, temperature, cutting force, and material removal rate.

ANOVA results underscore the significant impact of spindle speed, cutting fluids, and depth of cut (DOC). The TOPSIS analysis identified the optimal conditions as a spindle speed of 710 rpm, a DOC of 0.5 mm, and the use of Neem oil combined with graphene as the cutting fluid. Among these factors, the depth of cut was found to be the most influential, followed by spindle speed and cutting fluid. Confirmation tests corroborated the effectiveness of the optimization approach, affirming its potential to improve milling outcomes. This research offers valuable insights into enhancing machining efficiency and product quality in the milling of EN19 steel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信