Hengdiao Xu , Chang Chen , Yanxin Chen , Shaowu Jiu , Yan Liu
{"title":"合成用于去除废水中镉的三维分层花状硫酸钙微球","authors":"Hengdiao Xu , Chang Chen , Yanxin Chen , Shaowu Jiu , Yan Liu","doi":"10.1016/j.micromeso.2024.113304","DOIUrl":null,"url":null,"abstract":"<div><p>Novel three-dimensional hierarchical flower-like calcium sulfate microspheres (CSMs) were successfully prepared with the assistance of polyethylene glycol, trisodium citrate, and polyacrylic acid. The CSMs were monodispersed as flower-like microspheres constructed from interspersed nanosheets. Their average diameter and Brunauer–Emmett–Teller specific surface area were 15 μm and 16.09 m<sup>2</sup>/g, respectively. The prepared CSMs were employed as adsorbents in cadmium (Cd(II)) removal from wastewater and their Cd(II) adsorption performances were analyzed. The adsorption kinetic data were best fitted to the pseudo-first-order kinetic model and the experimental isotherm data were precisely fitted to the Freundlich isothermal model. The maximum adsorption capacity of the CSMs could reach up to 18.13 mg/g at 293 K under neutral conditions, affirming the potential utility of the CSMs in Cd(II) removal from wastewater.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"380 ","pages":"Article 113304"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of 3D hierarchical flower-like calcium sulfate microspheres for cadmium removal from wastewater\",\"authors\":\"Hengdiao Xu , Chang Chen , Yanxin Chen , Shaowu Jiu , Yan Liu\",\"doi\":\"10.1016/j.micromeso.2024.113304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Novel three-dimensional hierarchical flower-like calcium sulfate microspheres (CSMs) were successfully prepared with the assistance of polyethylene glycol, trisodium citrate, and polyacrylic acid. The CSMs were monodispersed as flower-like microspheres constructed from interspersed nanosheets. Their average diameter and Brunauer–Emmett–Teller specific surface area were 15 μm and 16.09 m<sup>2</sup>/g, respectively. The prepared CSMs were employed as adsorbents in cadmium (Cd(II)) removal from wastewater and their Cd(II) adsorption performances were analyzed. The adsorption kinetic data were best fitted to the pseudo-first-order kinetic model and the experimental isotherm data were precisely fitted to the Freundlich isothermal model. The maximum adsorption capacity of the CSMs could reach up to 18.13 mg/g at 293 K under neutral conditions, affirming the potential utility of the CSMs in Cd(II) removal from wastewater.</p></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"380 \",\"pages\":\"Article 113304\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124003263\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003263","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synthesis of 3D hierarchical flower-like calcium sulfate microspheres for cadmium removal from wastewater
Novel three-dimensional hierarchical flower-like calcium sulfate microspheres (CSMs) were successfully prepared with the assistance of polyethylene glycol, trisodium citrate, and polyacrylic acid. The CSMs were monodispersed as flower-like microspheres constructed from interspersed nanosheets. Their average diameter and Brunauer–Emmett–Teller specific surface area were 15 μm and 16.09 m2/g, respectively. The prepared CSMs were employed as adsorbents in cadmium (Cd(II)) removal from wastewater and their Cd(II) adsorption performances were analyzed. The adsorption kinetic data were best fitted to the pseudo-first-order kinetic model and the experimental isotherm data were precisely fitted to the Freundlich isothermal model. The maximum adsorption capacity of the CSMs could reach up to 18.13 mg/g at 293 K under neutral conditions, affirming the potential utility of the CSMs in Cd(II) removal from wastewater.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.