{"title":"利用 C2ℓ(1) 实现 Cℓ(1) 的线性独立性","authors":"Mirko Primc , Goran Trupčević","doi":"10.1016/j.jalgebra.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we prove linear independence of the combinatorial spanning set for standard <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math></span>-module <span><math><mi>L</mi><mo>(</mo><mi>k</mi><msub><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> by establishing a connection with the combinatorial basis of Feigin-Stoyanovsky's type subspace <span><math><mi>W</mi><mo>(</mo><mi>k</mi><msub><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math></span>-module <span><math><mi>L</mi><mo>(</mo><mi>k</mi><msub><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. It should be noted that the proof of linear independence for the basis of <span><math><mi>W</mi><mo>(</mo><mi>k</mi><msub><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> is obtained by using simple currents and intertwining operators in the vertex operator algebra <span><math><mi>L</mi><mo>(</mo><mi>k</mi><msub><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear independence for Cℓ(1) by using C2ℓ(1)\",\"authors\":\"Mirko Primc , Goran Trupčević\",\"doi\":\"10.1016/j.jalgebra.2024.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note we prove linear independence of the combinatorial spanning set for standard <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math></span>-module <span><math><mi>L</mi><mo>(</mo><mi>k</mi><msub><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> by establishing a connection with the combinatorial basis of Feigin-Stoyanovsky's type subspace <span><math><mi>W</mi><mo>(</mo><mi>k</mi><msub><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math></span>-module <span><math><mi>L</mi><mo>(</mo><mi>k</mi><msub><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>. It should be noted that the proof of linear independence for the basis of <span><math><mi>W</mi><mo>(</mo><mi>k</mi><msub><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> is obtained by using simple currents and intertwining operators in the vertex operator algebra <span><math><mi>L</mi><mo>(</mo><mi>k</mi><msub><mrow><mi>Λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324004502\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004502","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this note we prove linear independence of the combinatorial spanning set for standard -module by establishing a connection with the combinatorial basis of Feigin-Stoyanovsky's type subspace of -module . It should be noted that the proof of linear independence for the basis of is obtained by using simple currents and intertwining operators in the vertex operator algebra .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.