Claudio W. Backes , Felipe B. Reis , Guilherme B. Strapasson , Marcelo Assis , Elson Longo , Daniel E. Weibel
{"title":"提高光催化活性的碳量子点的绿色合成:氢/氧演化和染料光降解","authors":"Claudio W. Backes , Felipe B. Reis , Guilherme B. Strapasson , Marcelo Assis , Elson Longo , Daniel E. Weibel","doi":"10.1016/j.cattod.2024.114996","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon quantum dots (CQDs) have recently attracted attention across various fields due to their small size, high conductivity, fluorescence emission, low toxicity, and other desirable characteristics. In this study, highly fluorescent CQDs with an average diameter of 3.7 nm were prepared via microwave irradiation using a standard commercial microwave oven and glycerol as solvent. Several cation promoters were examined for CQD synthesis, with copper ions ultimately chosen for comprehensive characterization and application. The CQDs were impregnated onto both commercially available and microwave-synthesized TiO<sub>2</sub> nanoparticles. The photocatalytic activity was evaluated with respect to the hydrogen and oxygen generation. Under the employed conditions, the oxygen evolution reaction (OER) exhibited over 12 times higher efficiency than the hydrogen evolution reaction (HER). The enhanced OER activity is attributed to the high electronic conductivity of the small Cu doped CQDs@TiO<sub>2</sub> (Cu-CQDs@TiO<sub>2</sub>) facilitating an efficient electron transfer for the OER . Visible light activity (λ ≥ 400 nm) was demonstrated by photodegradation of the indigo carmine (IC) solution used as a model pollutant. Irradiation in the presence of the Cu-CQDs@TiO<sub>2</sub> photocatalyst resulted in complete degradation of the dye in less than 3 hours. The results presented here provide a promising methodology for designing high-performance photocatalysts based on environmentally friendly CQD syntheses. Crucial applications, from renewable energy production to environmental remediation, will benefit from strategies using the carbon abundance on Earth.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"443 ","pages":"Article 114996"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0920586124004905/pdfft?md5=3bb19f2b63d812c21c44c470794d472d&pid=1-s2.0-S0920586124004905-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Green Synthesis of carbon quantum dots for enhancing photocatalytic activity: Hydrogen/oxygen evolution and dye photodegradation\",\"authors\":\"Claudio W. Backes , Felipe B. Reis , Guilherme B. Strapasson , Marcelo Assis , Elson Longo , Daniel E. Weibel\",\"doi\":\"10.1016/j.cattod.2024.114996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon quantum dots (CQDs) have recently attracted attention across various fields due to their small size, high conductivity, fluorescence emission, low toxicity, and other desirable characteristics. In this study, highly fluorescent CQDs with an average diameter of 3.7 nm were prepared via microwave irradiation using a standard commercial microwave oven and glycerol as solvent. Several cation promoters were examined for CQD synthesis, with copper ions ultimately chosen for comprehensive characterization and application. The CQDs were impregnated onto both commercially available and microwave-synthesized TiO<sub>2</sub> nanoparticles. The photocatalytic activity was evaluated with respect to the hydrogen and oxygen generation. Under the employed conditions, the oxygen evolution reaction (OER) exhibited over 12 times higher efficiency than the hydrogen evolution reaction (HER). The enhanced OER activity is attributed to the high electronic conductivity of the small Cu doped CQDs@TiO<sub>2</sub> (Cu-CQDs@TiO<sub>2</sub>) facilitating an efficient electron transfer for the OER . Visible light activity (λ ≥ 400 nm) was demonstrated by photodegradation of the indigo carmine (IC) solution used as a model pollutant. Irradiation in the presence of the Cu-CQDs@TiO<sub>2</sub> photocatalyst resulted in complete degradation of the dye in less than 3 hours. The results presented here provide a promising methodology for designing high-performance photocatalysts based on environmentally friendly CQD syntheses. Crucial applications, from renewable energy production to environmental remediation, will benefit from strategies using the carbon abundance on Earth.</p></div>\",\"PeriodicalId\":264,\"journal\":{\"name\":\"Catalysis Today\",\"volume\":\"443 \",\"pages\":\"Article 114996\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0920586124004905/pdfft?md5=3bb19f2b63d812c21c44c470794d472d&pid=1-s2.0-S0920586124004905-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Today\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920586124004905\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124004905","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Green Synthesis of carbon quantum dots for enhancing photocatalytic activity: Hydrogen/oxygen evolution and dye photodegradation
Carbon quantum dots (CQDs) have recently attracted attention across various fields due to their small size, high conductivity, fluorescence emission, low toxicity, and other desirable characteristics. In this study, highly fluorescent CQDs with an average diameter of 3.7 nm were prepared via microwave irradiation using a standard commercial microwave oven and glycerol as solvent. Several cation promoters were examined for CQD synthesis, with copper ions ultimately chosen for comprehensive characterization and application. The CQDs were impregnated onto both commercially available and microwave-synthesized TiO2 nanoparticles. The photocatalytic activity was evaluated with respect to the hydrogen and oxygen generation. Under the employed conditions, the oxygen evolution reaction (OER) exhibited over 12 times higher efficiency than the hydrogen evolution reaction (HER). The enhanced OER activity is attributed to the high electronic conductivity of the small Cu doped CQDs@TiO2 (Cu-CQDs@TiO2) facilitating an efficient electron transfer for the OER . Visible light activity (λ ≥ 400 nm) was demonstrated by photodegradation of the indigo carmine (IC) solution used as a model pollutant. Irradiation in the presence of the Cu-CQDs@TiO2 photocatalyst resulted in complete degradation of the dye in less than 3 hours. The results presented here provide a promising methodology for designing high-performance photocatalysts based on environmentally friendly CQD syntheses. Crucial applications, from renewable energy production to environmental remediation, will benefit from strategies using the carbon abundance on Earth.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.