Zhiyuan Wen, Zhimin Liu, Haifen Bu, Yanwen Liu, Jiahua Zhu, Fenglin Hu, Zengzhi Li, Bo Huang, Fan Peng
{"title":"代谢组和转录组揭示了光照对冬虫夏草中熊果苷合成的调控机制","authors":"Zhiyuan Wen, Zhimin Liu, Haifen Bu, Yanwen Liu, Jiahua Zhu, Fenglin Hu, Zengzhi Li, Bo Huang, Fan Peng","doi":"10.1016/j.funbio.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><p><em>Cordyceps chanhua</em>, an important cordycipitoid medical mushroom with wide use in Asia, has gained attention for its bioactive component beauvericin (BEA), which is of medicinal value as a drug lead, but also of food safety risk. Recent observations by our group revealed a significant decrease of BEA content in <em>C. chanhua</em> when exposed to light, but the underlying regulatory mechanisms remain elusive. In this study, a comprehensive approach combining metabolomics and transcriptomics was employed to investigate the effects of white light on the secondary metabolism of <em>C. chanhua</em> for elucidation of the influence of light on BEA biosynthesis in this fungus. The result showed that the genes and metabolites involved in the synthesis of D-hydroxyisovaleric acid, a precursor of BEA synthesis, were down-regulated under light exposure, while those associated with the synthesis of phenylalanine, another precursor of BEA synthesis, were up-regulated leading to elevated phenylalanine levels. It suggested that the suppressive effect of light on BEA synthesis in <em>C. chanhua</em> occurred primarily through the inhibition of D-hydroxyisovaleric acid synthesis, while the enhanced phenylalanine biosynthesis likely directed towards other metabolic pathway such as pigment synthesis. These results contributed to a better understanding on how light modulates the secondary metabolism of <em>C. chanhua</em> and provided valuable guidance for optimizing BEA production in cultivation practices.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolome and transcriptome unveil the mechanism of light on regulating beauvericin synthesis in Cordyceps chanhua\",\"authors\":\"Zhiyuan Wen, Zhimin Liu, Haifen Bu, Yanwen Liu, Jiahua Zhu, Fenglin Hu, Zengzhi Li, Bo Huang, Fan Peng\",\"doi\":\"10.1016/j.funbio.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Cordyceps chanhua</em>, an important cordycipitoid medical mushroom with wide use in Asia, has gained attention for its bioactive component beauvericin (BEA), which is of medicinal value as a drug lead, but also of food safety risk. Recent observations by our group revealed a significant decrease of BEA content in <em>C. chanhua</em> when exposed to light, but the underlying regulatory mechanisms remain elusive. In this study, a comprehensive approach combining metabolomics and transcriptomics was employed to investigate the effects of white light on the secondary metabolism of <em>C. chanhua</em> for elucidation of the influence of light on BEA biosynthesis in this fungus. The result showed that the genes and metabolites involved in the synthesis of D-hydroxyisovaleric acid, a precursor of BEA synthesis, were down-regulated under light exposure, while those associated with the synthesis of phenylalanine, another precursor of BEA synthesis, were up-regulated leading to elevated phenylalanine levels. It suggested that the suppressive effect of light on BEA synthesis in <em>C. chanhua</em> occurred primarily through the inhibition of D-hydroxyisovaleric acid synthesis, while the enhanced phenylalanine biosynthesis likely directed towards other metabolic pathway such as pigment synthesis. These results contributed to a better understanding on how light modulates the secondary metabolism of <em>C. chanhua</em> and provided valuable guidance for optimizing BEA production in cultivation practices.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878614624001090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614624001090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Metabolome and transcriptome unveil the mechanism of light on regulating beauvericin synthesis in Cordyceps chanhua
Cordyceps chanhua, an important cordycipitoid medical mushroom with wide use in Asia, has gained attention for its bioactive component beauvericin (BEA), which is of medicinal value as a drug lead, but also of food safety risk. Recent observations by our group revealed a significant decrease of BEA content in C. chanhua when exposed to light, but the underlying regulatory mechanisms remain elusive. In this study, a comprehensive approach combining metabolomics and transcriptomics was employed to investigate the effects of white light on the secondary metabolism of C. chanhua for elucidation of the influence of light on BEA biosynthesis in this fungus. The result showed that the genes and metabolites involved in the synthesis of D-hydroxyisovaleric acid, a precursor of BEA synthesis, were down-regulated under light exposure, while those associated with the synthesis of phenylalanine, another precursor of BEA synthesis, were up-regulated leading to elevated phenylalanine levels. It suggested that the suppressive effect of light on BEA synthesis in C. chanhua occurred primarily through the inhibition of D-hydroxyisovaleric acid synthesis, while the enhanced phenylalanine biosynthesis likely directed towards other metabolic pathway such as pigment synthesis. These results contributed to a better understanding on how light modulates the secondary metabolism of C. chanhua and provided valuable guidance for optimizing BEA production in cultivation practices.