确定性弹出堆栈排序的新下限

IF 1 3区 数学 Q1 MATHEMATICS
Morgan Bauer, Keith Copenhaver
{"title":"确定性弹出堆栈排序的新下限","authors":"Morgan Bauer,&nbsp;Keith Copenhaver","doi":"10.1016/j.ejc.2024.104046","DOIUrl":null,"url":null,"abstract":"<div><p>The pop-stack-sorting process is a variation of the stack-sorting process. We consider a deterministic version of this process. We prove a lemma which characterises interior elements of increasing runs after <span><math><mi>t</mi></math></span> iterations of the process and provide a new lower bound of <span><math><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mi>n</mi></mrow></math></span> for the number of iterations of the process to fully sort a uniformly randomly chosen permutation of length <span><math><mi>n</mi></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001318/pdfft?md5=8663c72484e70fd60026d39c421da4b1&pid=1-s2.0-S0195669824001318-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new lower bound for deterministic pop-stack-sorting\",\"authors\":\"Morgan Bauer,&nbsp;Keith Copenhaver\",\"doi\":\"10.1016/j.ejc.2024.104046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The pop-stack-sorting process is a variation of the stack-sorting process. We consider a deterministic version of this process. We prove a lemma which characterises interior elements of increasing runs after <span><math><mi>t</mi></math></span> iterations of the process and provide a new lower bound of <span><math><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mi>n</mi></mrow></math></span> for the number of iterations of the process to fully sort a uniformly randomly chosen permutation of length <span><math><mi>n</mi></math></span>.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001318/pdfft?md5=8663c72484e70fd60026d39c421da4b1&pid=1-s2.0-S0195669824001318-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001318\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001318","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

pop 堆栈排序过程是堆栈排序过程的一种变体。我们考虑这一过程的确定性版本。我们证明了一个 Lemma,该 Lemma 描述了该过程 t 次迭代后递增运行的内部元素,并提供了一个新的下限,即对长度为 n 的均匀随机选择的排列进行完全排序的过程的迭代次数为 35n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new lower bound for deterministic pop-stack-sorting

The pop-stack-sorting process is a variation of the stack-sorting process. We consider a deterministic version of this process. We prove a lemma which characterises interior elements of increasing runs after t iterations of the process and provide a new lower bound of 35n for the number of iterations of the process to fully sort a uniformly randomly chosen permutation of length n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信