{"title":"矢量值艾伦-卡恩方程的稳定指数时差方案的无条件 MBP 保留和能量稳定性","authors":"Jiayin Li , Jingwei Li","doi":"10.1016/j.cnsns.2024.108271","DOIUrl":null,"url":null,"abstract":"<div><p>The vector-valued Allen–Cahn equations have been extensively applied to simulate the multiphase flow models. In this paper, we consider the maximum bound principle (MBP) and corresponding numerical schemes for the vector-valued Allen–Cahn equations. We firstly formulate the stabilized equations via utilizing the linear stabilization technique, and then focus on the bounding constant of the nonlinear function based on the fact that the extremes of a constrained problem will occur in the bounded and convex domain. Later the first- and second-order stabilized exponential time differencing schemes are adopted for temporal integration, which are linear and unconditionally preserve the discrete MBP in the time discrete sense. Moreover, the proposed schemes can be proven to dissipate the original energy instead of the modified energy. Their convergence analysis is also presented. Various numerical examples in two and three dimensions are performed to verify these theoretical results and demonstrate the efficiency of the proposed schemes.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditional MBP preservation and energy stability of the stabilized exponential time differencing schemes for the vector-valued Allen–Cahn equations\",\"authors\":\"Jiayin Li , Jingwei Li\",\"doi\":\"10.1016/j.cnsns.2024.108271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The vector-valued Allen–Cahn equations have been extensively applied to simulate the multiphase flow models. In this paper, we consider the maximum bound principle (MBP) and corresponding numerical schemes for the vector-valued Allen–Cahn equations. We firstly formulate the stabilized equations via utilizing the linear stabilization technique, and then focus on the bounding constant of the nonlinear function based on the fact that the extremes of a constrained problem will occur in the bounded and convex domain. Later the first- and second-order stabilized exponential time differencing schemes are adopted for temporal integration, which are linear and unconditionally preserve the discrete MBP in the time discrete sense. Moreover, the proposed schemes can be proven to dissipate the original energy instead of the modified energy. Their convergence analysis is also presented. Various numerical examples in two and three dimensions are performed to verify these theoretical results and demonstrate the efficiency of the proposed schemes.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424004568\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004568","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Unconditional MBP preservation and energy stability of the stabilized exponential time differencing schemes for the vector-valued Allen–Cahn equations
The vector-valued Allen–Cahn equations have been extensively applied to simulate the multiphase flow models. In this paper, we consider the maximum bound principle (MBP) and corresponding numerical schemes for the vector-valued Allen–Cahn equations. We firstly formulate the stabilized equations via utilizing the linear stabilization technique, and then focus on the bounding constant of the nonlinear function based on the fact that the extremes of a constrained problem will occur in the bounded and convex domain. Later the first- and second-order stabilized exponential time differencing schemes are adopted for temporal integration, which are linear and unconditionally preserve the discrete MBP in the time discrete sense. Moreover, the proposed schemes can be proven to dissipate the original energy instead of the modified energy. Their convergence analysis is also presented. Various numerical examples in two and three dimensions are performed to verify these theoretical results and demonstrate the efficiency of the proposed schemes.