二维多项式分数延迟扩散方程的 L1-FEM 离散化

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Tan Tan, Hongliang Liu, Weiping Bu
{"title":"二维多项式分数延迟扩散方程的 L1-FEM 离散化","authors":"Tan Tan,&nbsp;Hongliang Liu,&nbsp;Weiping Bu","doi":"10.1016/j.cnsns.2024.108285","DOIUrl":null,"url":null,"abstract":"<div><p>A two-dimensional multiterm fractional delay diffusion equation is considered. The representation of the exact solution of the equation is derived and it is shown that the solution exhibits singular behaviors at multiple nodes due to the initial singularity and time delay. This results in the numerical schemes for solving the equation typically have a lower order of convergence in time. The problem is approximated in time by the L1 and Alikhanov schemes on symmetrical graded meshes, while in space the standard finite element method is applied. Numerical stability and convergence are presented for the schemes. Numerical experiments are performed to show the effectiveness of the schemes.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L1-FEM discretizations for two-dimensional multiterm fractional delay diffusion equations\",\"authors\":\"Tan Tan,&nbsp;Hongliang Liu,&nbsp;Weiping Bu\",\"doi\":\"10.1016/j.cnsns.2024.108285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A two-dimensional multiterm fractional delay diffusion equation is considered. The representation of the exact solution of the equation is derived and it is shown that the solution exhibits singular behaviors at multiple nodes due to the initial singularity and time delay. This results in the numerical schemes for solving the equation typically have a lower order of convergence in time. The problem is approximated in time by the L1 and Alikhanov schemes on symmetrical graded meshes, while in space the standard finite element method is applied. Numerical stability and convergence are presented for the schemes. Numerical experiments are performed to show the effectiveness of the schemes.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424004702\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004702","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究考虑了一个二维多项式分数延迟扩散方程。推导出了方程精确解的表示方法,并证明由于初始奇异性和时间延迟,解在多个节点处表现出奇异行为。这导致求解该方程的数值方案在时间上通常具有较低的收敛阶数。该问题在时间上采用对称分级网格上的 L1 和 Alikhanov 方案进行近似,在空间上则采用标准有限元方法。介绍了这些方案的数值稳定性和收敛性。还进行了数值实验,以显示这些方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L1-FEM discretizations for two-dimensional multiterm fractional delay diffusion equations

A two-dimensional multiterm fractional delay diffusion equation is considered. The representation of the exact solution of the equation is derived and it is shown that the solution exhibits singular behaviors at multiple nodes due to the initial singularity and time delay. This results in the numerical schemes for solving the equation typically have a lower order of convergence in time. The problem is approximated in time by the L1 and Alikhanov schemes on symmetrical graded meshes, while in space the standard finite element method is applied. Numerical stability and convergence are presented for the schemes. Numerical experiments are performed to show the effectiveness of the schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信