{"title":"二维多项式分数延迟扩散方程的 L1-FEM 离散化","authors":"Tan Tan, Hongliang Liu, Weiping Bu","doi":"10.1016/j.cnsns.2024.108285","DOIUrl":null,"url":null,"abstract":"<div><p>A two-dimensional multiterm fractional delay diffusion equation is considered. The representation of the exact solution of the equation is derived and it is shown that the solution exhibits singular behaviors at multiple nodes due to the initial singularity and time delay. This results in the numerical schemes for solving the equation typically have a lower order of convergence in time. The problem is approximated in time by the L1 and Alikhanov schemes on symmetrical graded meshes, while in space the standard finite element method is applied. Numerical stability and convergence are presented for the schemes. Numerical experiments are performed to show the effectiveness of the schemes.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L1-FEM discretizations for two-dimensional multiterm fractional delay diffusion equations\",\"authors\":\"Tan Tan, Hongliang Liu, Weiping Bu\",\"doi\":\"10.1016/j.cnsns.2024.108285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A two-dimensional multiterm fractional delay diffusion equation is considered. The representation of the exact solution of the equation is derived and it is shown that the solution exhibits singular behaviors at multiple nodes due to the initial singularity and time delay. This results in the numerical schemes for solving the equation typically have a lower order of convergence in time. The problem is approximated in time by the L1 and Alikhanov schemes on symmetrical graded meshes, while in space the standard finite element method is applied. Numerical stability and convergence are presented for the schemes. Numerical experiments are performed to show the effectiveness of the schemes.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424004702\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004702","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
L1-FEM discretizations for two-dimensional multiterm fractional delay diffusion equations
A two-dimensional multiterm fractional delay diffusion equation is considered. The representation of the exact solution of the equation is derived and it is shown that the solution exhibits singular behaviors at multiple nodes due to the initial singularity and time delay. This results in the numerical schemes for solving the equation typically have a lower order of convergence in time. The problem is approximated in time by the L1 and Alikhanov schemes on symmetrical graded meshes, while in space the standard finite element method is applied. Numerical stability and convergence are presented for the schemes. Numerical experiments are performed to show the effectiveness of the schemes.