翘积流形中具有规定韦氏曲率的 k 凸超曲面

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaojuan Chen, Qiang Tu, Ni Xiang
{"title":"翘积流形中具有规定韦氏曲率的 k 凸超曲面","authors":"Xiaojuan Chen,&nbsp;Qiang Tu,&nbsp;Ni Xiang","doi":"10.1016/j.na.2024.113640","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider Weingarten curvature equations for <span><math><mi>k</mi></math></span>-convex hypersurfaces with <span><math><mrow><mi>n</mi><mo>&lt;</mo><mn>2</mn><mi>k</mi></mrow></math></span> in a warped product manifold <span><math><mrow><mover><mrow><mi>M</mi></mrow><mo>¯</mo></mover><mo>=</mo><mi>I</mi><msub><mrow><mo>×</mo></mrow><mrow><mi>λ</mi></mrow></msub><mi>M</mi></mrow></math></span>. Based on the conjecture proposed by Ren–Wang in Ren and Wang (2020), which is valid for <span><math><mrow><mi>k</mi><mo>≥</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span>, we derive curvature estimates for equation <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>κ</mi><mo>)</mo></mrow><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>ν</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> through a straightforward proof. Furthermore, we also obtain an existence result for the star-shaped compact hypersurface <span><math><mi>Σ</mi></math></span> satisfying the above equation by the degree theory under some sufficient conditions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"k-convex hypersurfaces with prescribed Weingarten curvature in warped product manifolds\",\"authors\":\"Xiaojuan Chen,&nbsp;Qiang Tu,&nbsp;Ni Xiang\",\"doi\":\"10.1016/j.na.2024.113640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider Weingarten curvature equations for <span><math><mi>k</mi></math></span>-convex hypersurfaces with <span><math><mrow><mi>n</mi><mo>&lt;</mo><mn>2</mn><mi>k</mi></mrow></math></span> in a warped product manifold <span><math><mrow><mover><mrow><mi>M</mi></mrow><mo>¯</mo></mover><mo>=</mo><mi>I</mi><msub><mrow><mo>×</mo></mrow><mrow><mi>λ</mi></mrow></msub><mi>M</mi></mrow></math></span>. Based on the conjecture proposed by Ren–Wang in Ren and Wang (2020), which is valid for <span><math><mrow><mi>k</mi><mo>≥</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span>, we derive curvature estimates for equation <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>κ</mi><mo>)</mo></mrow><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>ν</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> through a straightforward proof. Furthermore, we also obtain an existence result for the star-shaped compact hypersurface <span><math><mi>Σ</mi></math></span> satisfying the above equation by the degree theory under some sufficient conditions.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001597\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001597","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑在翘曲积流形M¯=I×λM中n<2k的k凸超曲面的韦氏曲率方程。基于任旺在 Ren and Wang (2020) 中提出的对 k≥n-2 有效的猜想,我们通过直接证明得出了方程 σk(κ)=ψ(V,ν(V)) 的曲率估计。此外,我们还通过度理论在一些充分条件下得到了满足上述方程的星形紧凑超曲面 Σ 的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
k-convex hypersurfaces with prescribed Weingarten curvature in warped product manifolds

In this paper, we consider Weingarten curvature equations for k-convex hypersurfaces with n<2k in a warped product manifold M¯=I×λM. Based on the conjecture proposed by Ren–Wang in Ren and Wang (2020), which is valid for kn2, we derive curvature estimates for equation σk(κ)=ψ(V,ν(V)) through a straightforward proof. Furthermore, we also obtain an existence result for the star-shaped compact hypersurface Σ satisfying the above equation by the degree theory under some sufficient conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信