Dalia Morcillo , Alexander Winckelmann , Daniel A. Frick , Lars Jacobsen , Tino Seger , Stefan Florek , Silke Richter , Jochen Vogl , Sebastian Recknagel , Ulrich Panne , Carlos Abad
{"title":"利用光谱分辨率更高的原子吸收光谱法对地质样本进行锂同位素比率分析","authors":"Dalia Morcillo , Alexander Winckelmann , Daniel A. Frick , Lars Jacobsen , Tino Seger , Stefan Florek , Silke Richter , Jochen Vogl , Sebastian Recknagel , Ulrich Panne , Carlos Abad","doi":"10.1016/j.sab.2024.107013","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces an improved spectrometric method with enhanced precision to determine isotope ratios in geological samples without chromatographic separation. Firstly, the improvement is achieved by increasing the spectral resolution of the spectrometer applied in well-known high-resolution continuum source atomic absorption spectrometry (HR-CS-AAS). The resulting resolving power and linear dispersion of the upgraded setup, which is denoted in the following as HR+CS-AAS, is well adapted to the line widths of the Li isotope components we investigated. Secondly, our proposed method combines optical absorption spectrometry with machine learning data analysis using an extreme gradient boosting algorithm (XGBoost). This method was applied to analyze certified geological reference materials with <em>δ</em><sub>LSVEC</sub>(<sup>7</sup>Li/<sup>6</sup>Li) (hereafter <em>δ</em><sup>7</sup>Li) values ranging from −0.5 ‰ to 4.5 ‰. With a pixel related optical resolving power of λ/∆λ ≈ 780 000, we obtain precisions in <em>δ</em><sup>7</sup>Li measurements from 1.0 ‰ to 2.5 ‰. The method is validated by comparing the results with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), confirming its metrological compatibility. This work presents a fast, robust, and reliable method for <em>δ</em><sup>7</sup>Li measurement in geological samples.</p></div>","PeriodicalId":21890,"journal":{"name":"Spectrochimica Acta Part B: Atomic Spectroscopy","volume":"220 ","pages":"Article 107013"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0584854724001575/pdfft?md5=62fdc23880af0f159e2b9bd200e12fa2&pid=1-s2.0-S0584854724001575-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lithium isotope ratio analysis of geological samples using atomic absorption spectrometry with improved spectral resolution\",\"authors\":\"Dalia Morcillo , Alexander Winckelmann , Daniel A. Frick , Lars Jacobsen , Tino Seger , Stefan Florek , Silke Richter , Jochen Vogl , Sebastian Recknagel , Ulrich Panne , Carlos Abad\",\"doi\":\"10.1016/j.sab.2024.107013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduces an improved spectrometric method with enhanced precision to determine isotope ratios in geological samples without chromatographic separation. Firstly, the improvement is achieved by increasing the spectral resolution of the spectrometer applied in well-known high-resolution continuum source atomic absorption spectrometry (HR-CS-AAS). The resulting resolving power and linear dispersion of the upgraded setup, which is denoted in the following as HR+CS-AAS, is well adapted to the line widths of the Li isotope components we investigated. Secondly, our proposed method combines optical absorption spectrometry with machine learning data analysis using an extreme gradient boosting algorithm (XGBoost). This method was applied to analyze certified geological reference materials with <em>δ</em><sub>LSVEC</sub>(<sup>7</sup>Li/<sup>6</sup>Li) (hereafter <em>δ</em><sup>7</sup>Li) values ranging from −0.5 ‰ to 4.5 ‰. With a pixel related optical resolving power of λ/∆λ ≈ 780 000, we obtain precisions in <em>δ</em><sup>7</sup>Li measurements from 1.0 ‰ to 2.5 ‰. The method is validated by comparing the results with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), confirming its metrological compatibility. This work presents a fast, robust, and reliable method for <em>δ</em><sup>7</sup>Li measurement in geological samples.</p></div>\",\"PeriodicalId\":21890,\"journal\":{\"name\":\"Spectrochimica Acta Part B: Atomic Spectroscopy\",\"volume\":\"220 \",\"pages\":\"Article 107013\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0584854724001575/pdfft?md5=62fdc23880af0f159e2b9bd200e12fa2&pid=1-s2.0-S0584854724001575-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part B: Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0584854724001575\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part B: Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0584854724001575","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Lithium isotope ratio analysis of geological samples using atomic absorption spectrometry with improved spectral resolution
This study introduces an improved spectrometric method with enhanced precision to determine isotope ratios in geological samples without chromatographic separation. Firstly, the improvement is achieved by increasing the spectral resolution of the spectrometer applied in well-known high-resolution continuum source atomic absorption spectrometry (HR-CS-AAS). The resulting resolving power and linear dispersion of the upgraded setup, which is denoted in the following as HR+CS-AAS, is well adapted to the line widths of the Li isotope components we investigated. Secondly, our proposed method combines optical absorption spectrometry with machine learning data analysis using an extreme gradient boosting algorithm (XGBoost). This method was applied to analyze certified geological reference materials with δLSVEC(7Li/6Li) (hereafter δ7Li) values ranging from −0.5 ‰ to 4.5 ‰. With a pixel related optical resolving power of λ/∆λ ≈ 780 000, we obtain precisions in δ7Li measurements from 1.0 ‰ to 2.5 ‰. The method is validated by comparing the results with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), confirming its metrological compatibility. This work presents a fast, robust, and reliable method for δ7Li measurement in geological samples.
期刊介绍:
Spectrochimica Acta Part B: Atomic Spectroscopy, is intended for the rapid publication of both original work and reviews in the following fields:
Atomic Emission (AES), Atomic Absorption (AAS) and Atomic Fluorescence (AFS) spectroscopy;
Mass Spectrometry (MS) for inorganic analysis covering Spark Source (SS-MS), Inductively Coupled Plasma (ICP-MS), Glow Discharge (GD-MS), and Secondary Ion Mass Spectrometry (SIMS).
Laser induced atomic spectroscopy for inorganic analysis, including non-linear optical laser spectroscopy, covering Laser Enhanced Ionization (LEI), Laser Induced Fluorescence (LIF), Resonance Ionization Spectroscopy (RIS) and Resonance Ionization Mass Spectrometry (RIMS); Laser Induced Breakdown Spectroscopy (LIBS); Cavity Ringdown Spectroscopy (CRDS), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS).
X-ray spectrometry, X-ray Optics and Microanalysis, including X-ray fluorescence spectrometry (XRF) and related techniques, in particular Total-reflection X-ray Fluorescence Spectrometry (TXRF), and Synchrotron Radiation-excited Total reflection XRF (SR-TXRF).
Manuscripts dealing with (i) fundamentals, (ii) methodology development, (iii)instrumentation, and (iv) applications, can be submitted for publication.