利用改进的带排列揭示基于 NDI(萘二亚胺)的非富勒烯受体的光电激子动力学

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sanyam Jain, M Sridevi, Tanushree Majhi, Narendra Pratap Tripathi, Sanchita Sengupta and Rajiv K. Singh*, 
{"title":"利用改进的带排列揭示基于 NDI(萘二亚胺)的非富勒烯受体的光电激子动力学","authors":"Sanyam Jain,&nbsp;M Sridevi,&nbsp;Tanushree Majhi,&nbsp;Narendra Pratap Tripathi,&nbsp;Sanchita Sengupta and Rajiv K. Singh*,&nbsp;","doi":"10.1021/acsapm.4c0169610.1021/acsapm.4c01696","DOIUrl":null,"url":null,"abstract":"<p >Nonfullerene acceptors offer tunable optical and electrical properties. They are gaining extensive research attention to enable highly efficient organic solar cells (OSCs) beyond the capabilities of traditional fullerene-based acceptors. This study investigates ultrafast charge transfer and exciton dissociation dynamics within bulk heterojunction (BHJ) systems incorporating the nonfullerene acceptor material <i>N</i>,<i>N</i>′-bis(1-indanyl)naphthalene-1,4,5,8-tetracarboxylic diimide (NDIID). By comparing the performance of poly(3-hexylthiophene) (P3HT):NDIID and poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-<i>b</i>:4,5-<i>b</i>′]-dithiophene-2,6-diyl-<i>alt</i>-3-fluoro-2-[(2-ethylhexyl)carbonyl]-thieno[3,4-<i>b</i>]thiophene-4,6-diyl} (PTB7):NDIID blends to that of traditional [6,6]-phenyl-C<sub>61</sub>-butyric acid methyl ester (PCBM)-based blends, ultrafast transient absorption spectroscopy (UTAS) unveils the superior charge carrier dynamics facilitated by NDIID, a promising nonfullerene acceptor. The NDIID-containing blends exhibit enhanced charge generation, transport, and collection efficiency, which are attributed to better band alignment, higher electron mobility, accelerated charge transport dynamics (up to 44%), and reduced recombination rates (up to 75%). These improvements are indicative of a significant increase in device efficiency and stability. The introduction of NDIID as a viable alternative to PCBM for nonfullerene acceptors in BHJ organic solar cells represents a crucial step forward in developing high-performance, cost-effective renewable energy technologies.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"6 16","pages":"9837–9847 9837–9847"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Optoelectronic Exciton Dynamics of NDI (Naphthalene Diimide)-Based Nonfullerene Acceptor with Improved Band Alignment\",\"authors\":\"Sanyam Jain,&nbsp;M Sridevi,&nbsp;Tanushree Majhi,&nbsp;Narendra Pratap Tripathi,&nbsp;Sanchita Sengupta and Rajiv K. Singh*,&nbsp;\",\"doi\":\"10.1021/acsapm.4c0169610.1021/acsapm.4c01696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nonfullerene acceptors offer tunable optical and electrical properties. They are gaining extensive research attention to enable highly efficient organic solar cells (OSCs) beyond the capabilities of traditional fullerene-based acceptors. This study investigates ultrafast charge transfer and exciton dissociation dynamics within bulk heterojunction (BHJ) systems incorporating the nonfullerene acceptor material <i>N</i>,<i>N</i>′-bis(1-indanyl)naphthalene-1,4,5,8-tetracarboxylic diimide (NDIID). By comparing the performance of poly(3-hexylthiophene) (P3HT):NDIID and poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-<i>b</i>:4,5-<i>b</i>′]-dithiophene-2,6-diyl-<i>alt</i>-3-fluoro-2-[(2-ethylhexyl)carbonyl]-thieno[3,4-<i>b</i>]thiophene-4,6-diyl} (PTB7):NDIID blends to that of traditional [6,6]-phenyl-C<sub>61</sub>-butyric acid methyl ester (PCBM)-based blends, ultrafast transient absorption spectroscopy (UTAS) unveils the superior charge carrier dynamics facilitated by NDIID, a promising nonfullerene acceptor. The NDIID-containing blends exhibit enhanced charge generation, transport, and collection efficiency, which are attributed to better band alignment, higher electron mobility, accelerated charge transport dynamics (up to 44%), and reduced recombination rates (up to 75%). These improvements are indicative of a significant increase in device efficiency and stability. The introduction of NDIID as a viable alternative to PCBM for nonfullerene acceptors in BHJ organic solar cells represents a crucial step forward in developing high-performance, cost-effective renewable energy technologies.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"6 16\",\"pages\":\"9837–9847 9837–9847\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.4c01696\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c01696","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非富勒烯受体具有可调的光学和电学特性。非富勒烯受体具有可调的光学和电学特性,在实现高效有机太阳能电池(OSCs)方面,非富勒烯受体正获得广泛的研究关注,其性能已超越了传统的富勒烯受体。本研究调查了含有非富勒烯受体材料 N,N′-双(1-茚基)萘-1,4,5,8-四羧酸二亚胺(NDIID)的体异质结(BHJ)系统中的超快电荷转移和激子解离动力学。通过比较聚(3-己基噻吩)(P3HT):NDIID 和聚{4,8-双[5-(2-乙基己基)噻吩-2-基]苯并[1,2-b:4,5-b′]-二噻吩-2,6-二基-盐-3-氟-2-[(2-乙基己基)羰基]-噻吩并[3,4-b]噻吩-4,6-二基}(PTB7)的性能:与传统的基于[6,6]-苯基-C61-丁酸甲酯(PCBM)的混合物相比,超快瞬态吸收光谱(UTAS)揭示了 NDIID(一种有前途的非富勒烯受体)所促进的卓越电荷载流子动力学。含有 NDIID 的共混物显示出更高的电荷产生、传输和收集效率,这归因于更好的能带排列、更高的电子迁移率、更快的电荷传输动力学(高达 44%)以及更低的重组率(高达 75%)。这些改进表明器件的效率和稳定性显著提高。在 BHJ 有机太阳能电池中引入 NDIID 作为非富勒烯受体 PCBM 的可行替代品,标志着在开发高性能、高成本效益的可再生能源技术方面迈出了关键的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the Optoelectronic Exciton Dynamics of NDI (Naphthalene Diimide)-Based Nonfullerene Acceptor with Improved Band Alignment

Unraveling the Optoelectronic Exciton Dynamics of NDI (Naphthalene Diimide)-Based Nonfullerene Acceptor with Improved Band Alignment

Nonfullerene acceptors offer tunable optical and electrical properties. They are gaining extensive research attention to enable highly efficient organic solar cells (OSCs) beyond the capabilities of traditional fullerene-based acceptors. This study investigates ultrafast charge transfer and exciton dissociation dynamics within bulk heterojunction (BHJ) systems incorporating the nonfullerene acceptor material N,N′-bis(1-indanyl)naphthalene-1,4,5,8-tetracarboxylic diimide (NDIID). By comparing the performance of poly(3-hexylthiophene) (P3HT):NDIID and poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b′]-dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]-thieno[3,4-b]thiophene-4,6-diyl} (PTB7):NDIID blends to that of traditional [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)-based blends, ultrafast transient absorption spectroscopy (UTAS) unveils the superior charge carrier dynamics facilitated by NDIID, a promising nonfullerene acceptor. The NDIID-containing blends exhibit enhanced charge generation, transport, and collection efficiency, which are attributed to better band alignment, higher electron mobility, accelerated charge transport dynamics (up to 44%), and reduced recombination rates (up to 75%). These improvements are indicative of a significant increase in device efficiency and stability. The introduction of NDIID as a viable alternative to PCBM for nonfullerene acceptors in BHJ organic solar cells represents a crucial step forward in developing high-performance, cost-effective renewable energy technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信