将脂肪酶固定在分层碳化的 Macro-MIL-88A 上以生产生物柴油

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Muhammad Rahim, Zhiqiang Zou, Zhuoyang Du, Lingmei Dai, Dehua Liu and Wei Du*, 
{"title":"将脂肪酶固定在分层碳化的 Macro-MIL-88A 上以生产生物柴油","authors":"Muhammad Rahim,&nbsp;Zhiqiang Zou,&nbsp;Zhuoyang Du,&nbsp;Lingmei Dai,&nbsp;Dehua Liu and Wei Du*,&nbsp;","doi":"10.1021/acsanm.4c0304810.1021/acsanm.4c03048","DOIUrl":null,"url":null,"abstract":"<p >Macroporous metal–organic frameworks (MOFs) exhibit immense promise as carriers for immobilizing macromolecules, notably lipases. Nevertheless, their minute particle dimensions pose challenges in the recycling process, thereby significantly constraining their widespread practical utilization. To address this limitation, this study explores the potential of incorporating magnetic substances during the carbonization process, especially focusing on the use of magnetically carbonized Macro-MIL-88A for lipase immobilization and biodiesel production. The effects of different carbonation temperatures on macroporous MIL-88A and microporous MIL-88A were investigated. Our findings revealed that the carbonization temperature influenced the preservation of the 3D structure and the generation of magnetite. Carbonized Macro-MIL-88A (Macro-Fe<sub>3</sub>O<sub>4</sub>-C) at 500 °C exhibited superior specific activity and enhanced activity recovery. Lipase immobilized on Macro-Fe<sub>3</sub>O<sub>4</sub>-C (Macro-Fe<sub>3</sub>O<sub>4</sub>-C-TLL) demonstrated higher methanol tolerance during the biodiesel production process compared to Micro-Fe<sub>3</sub>O<sub>4</sub>-C. The reduced reusability of Macro-Fe<sub>3</sub>O<sub>4</sub>-C-TLL was attributed to the adsorption of the by-product glycerol. We further investigated pre- and posthydrophobic modifications on Macro-Fe<sub>3</sub>O<sub>4</sub>-C and found that post-PDMS modification maintained both high enzyme loading and good reusability of the immobilized lipase during biodiesel production. This study presents a promising method to enhance the reusability of immobilized large molecules by incorporating magnetite via a straightforward carbonization process.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 16","pages":"19163–19174 19163–19174"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipase Immobilization over Hierarchically Carbonized Macro-MIL-88A for Biodiesel Production\",\"authors\":\"Muhammad Rahim,&nbsp;Zhiqiang Zou,&nbsp;Zhuoyang Du,&nbsp;Lingmei Dai,&nbsp;Dehua Liu and Wei Du*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0304810.1021/acsanm.4c03048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Macroporous metal–organic frameworks (MOFs) exhibit immense promise as carriers for immobilizing macromolecules, notably lipases. Nevertheless, their minute particle dimensions pose challenges in the recycling process, thereby significantly constraining their widespread practical utilization. To address this limitation, this study explores the potential of incorporating magnetic substances during the carbonization process, especially focusing on the use of magnetically carbonized Macro-MIL-88A for lipase immobilization and biodiesel production. The effects of different carbonation temperatures on macroporous MIL-88A and microporous MIL-88A were investigated. Our findings revealed that the carbonization temperature influenced the preservation of the 3D structure and the generation of magnetite. Carbonized Macro-MIL-88A (Macro-Fe<sub>3</sub>O<sub>4</sub>-C) at 500 °C exhibited superior specific activity and enhanced activity recovery. Lipase immobilized on Macro-Fe<sub>3</sub>O<sub>4</sub>-C (Macro-Fe<sub>3</sub>O<sub>4</sub>-C-TLL) demonstrated higher methanol tolerance during the biodiesel production process compared to Micro-Fe<sub>3</sub>O<sub>4</sub>-C. The reduced reusability of Macro-Fe<sub>3</sub>O<sub>4</sub>-C-TLL was attributed to the adsorption of the by-product glycerol. We further investigated pre- and posthydrophobic modifications on Macro-Fe<sub>3</sub>O<sub>4</sub>-C and found that post-PDMS modification maintained both high enzyme loading and good reusability of the immobilized lipase during biodiesel production. This study presents a promising method to enhance the reusability of immobilized large molecules by incorporating magnetite via a straightforward carbonization process.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"7 16\",\"pages\":\"19163–19174 19163–19174\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c03048\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c03048","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为固定大分子(尤其是脂肪酶)的载体,大孔金属有机框架(MOFs)前景广阔。然而,其微小的颗粒尺寸给回收过程带来了挑战,从而极大地限制了其广泛的实际应用。为了解决这一局限性,本研究探索了在碳化过程中加入磁性物质的潜力,尤其侧重于利用磁性碳化的 Macro-MIL-88A 固定脂肪酶和生产生物柴油。研究了不同碳化温度对大孔 MIL-88A 和微孔 MIL-88A 的影响。研究结果表明,碳化温度影响了三维结构的保持和磁铁矿的生成。在 500 °C 下碳化的 Macro-MIL-88A (Macro-Fe3O4-C)表现出更高的比活性和更强的活性恢复能力。与 Micro-Fe3O4-C 相比,固定在 Macro-Fe3O4-C 上的脂肪酶(Macro-Fe3O4-C-TLL)在生物柴油生产过程中表现出更高的甲醇耐受性。Macro-Fe3O4-C-TLL 的重复利用率降低的原因是吸附了副产品甘油。我们进一步研究了对 Macro-Fe3O4-C 进行疏水前和疏水后改性的情况,发现在生物柴油生产过程中,PDMS 后改性既能保持较高的酶负荷,又能保持固定化脂肪酶的良好重复使用性。这项研究提出了一种很有前景的方法,即通过直接碳化工艺加入磁铁矿,从而提高固定化大分子的可重复使用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lipase Immobilization over Hierarchically Carbonized Macro-MIL-88A for Biodiesel Production

Lipase Immobilization over Hierarchically Carbonized Macro-MIL-88A for Biodiesel Production

Macroporous metal–organic frameworks (MOFs) exhibit immense promise as carriers for immobilizing macromolecules, notably lipases. Nevertheless, their minute particle dimensions pose challenges in the recycling process, thereby significantly constraining their widespread practical utilization. To address this limitation, this study explores the potential of incorporating magnetic substances during the carbonization process, especially focusing on the use of magnetically carbonized Macro-MIL-88A for lipase immobilization and biodiesel production. The effects of different carbonation temperatures on macroporous MIL-88A and microporous MIL-88A were investigated. Our findings revealed that the carbonization temperature influenced the preservation of the 3D structure and the generation of magnetite. Carbonized Macro-MIL-88A (Macro-Fe3O4-C) at 500 °C exhibited superior specific activity and enhanced activity recovery. Lipase immobilized on Macro-Fe3O4-C (Macro-Fe3O4-C-TLL) demonstrated higher methanol tolerance during the biodiesel production process compared to Micro-Fe3O4-C. The reduced reusability of Macro-Fe3O4-C-TLL was attributed to the adsorption of the by-product glycerol. We further investigated pre- and posthydrophobic modifications on Macro-Fe3O4-C and found that post-PDMS modification maintained both high enzyme loading and good reusability of the immobilized lipase during biodiesel production. This study presents a promising method to enhance the reusability of immobilized large molecules by incorporating magnetite via a straightforward carbonization process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信