Yizhuo Chen, Bo Cui, Yuhang Dou, Huiyu Fan, Yanjun Fang, Lei Wang, Zhenghua Duan
{"title":"聚乳酸微塑料上生物膜的特征及其对水稻秧苗生长的抑制作用:石油基微塑料比较研究。","authors":"Yizhuo Chen, Bo Cui, Yuhang Dou, Huiyu Fan, Yanjun Fang, Lei Wang, Zhenghua Duan","doi":"10.1016/j.jhazmat.2024.135469","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence highlights the negative effects of microplastics (MPs) on crops and bio-based plastics offer an alternative to conventional plastics. However, there is limited knowledge on the impacts and mechanisms of bio-based MPs on crop physiology. In this study, bio-based polylactic acid (PLA) and petroleum-based MPs [polyamide (PA) and polypropylene (PP)] were added to hydroponic cultures planted with rice (Oryza sativa L.) seedlings to assess their toxicity. Compared to PA and PP MPs, PLA MPs experienced greater aging after 28 days of exposure, and their surfaces were loaded with more rod-shaped microorganisms with potential plastic degradation ability, such as Proteobacteria and Bacteroidota, which competed with rice seedlings for carbon and nitrogen sources for self-multiplication, thus altering the carbon fixation and nitrogen cycling processes during rice seedling growth. Down-regulation of amino acid and lipid metabolisms in the PLA treatment inhibited the normal synthesis of chlorophyll in rice seedling leaves. Consequently, decreases in the biomass and height of rice seedling roots and shoots were observed in the PLA MP treatment. This study provides evidence that bio-based MPs may have a more severe impact on crop growth than petroleum-based MPs.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135469"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of biofilms on polylactic acid microplastics and their inhibitory effects on the growth of rice seedlings: A comparative study of petroleum-based microplastics.\",\"authors\":\"Yizhuo Chen, Bo Cui, Yuhang Dou, Huiyu Fan, Yanjun Fang, Lei Wang, Zhenghua Duan\",\"doi\":\"10.1016/j.jhazmat.2024.135469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing evidence highlights the negative effects of microplastics (MPs) on crops and bio-based plastics offer an alternative to conventional plastics. However, there is limited knowledge on the impacts and mechanisms of bio-based MPs on crop physiology. In this study, bio-based polylactic acid (PLA) and petroleum-based MPs [polyamide (PA) and polypropylene (PP)] were added to hydroponic cultures planted with rice (Oryza sativa L.) seedlings to assess their toxicity. Compared to PA and PP MPs, PLA MPs experienced greater aging after 28 days of exposure, and their surfaces were loaded with more rod-shaped microorganisms with potential plastic degradation ability, such as Proteobacteria and Bacteroidota, which competed with rice seedlings for carbon and nitrogen sources for self-multiplication, thus altering the carbon fixation and nitrogen cycling processes during rice seedling growth. Down-regulation of amino acid and lipid metabolisms in the PLA treatment inhibited the normal synthesis of chlorophyll in rice seedling leaves. Consequently, decreases in the biomass and height of rice seedling roots and shoots were observed in the PLA MP treatment. This study provides evidence that bio-based MPs may have a more severe impact on crop growth than petroleum-based MPs.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"478 \",\"pages\":\"135469\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Characteristics of biofilms on polylactic acid microplastics and their inhibitory effects on the growth of rice seedlings: A comparative study of petroleum-based microplastics.
Increasing evidence highlights the negative effects of microplastics (MPs) on crops and bio-based plastics offer an alternative to conventional plastics. However, there is limited knowledge on the impacts and mechanisms of bio-based MPs on crop physiology. In this study, bio-based polylactic acid (PLA) and petroleum-based MPs [polyamide (PA) and polypropylene (PP)] were added to hydroponic cultures planted with rice (Oryza sativa L.) seedlings to assess their toxicity. Compared to PA and PP MPs, PLA MPs experienced greater aging after 28 days of exposure, and their surfaces were loaded with more rod-shaped microorganisms with potential plastic degradation ability, such as Proteobacteria and Bacteroidota, which competed with rice seedlings for carbon and nitrogen sources for self-multiplication, thus altering the carbon fixation and nitrogen cycling processes during rice seedling growth. Down-regulation of amino acid and lipid metabolisms in the PLA treatment inhibited the normal synthesis of chlorophyll in rice seedling leaves. Consequently, decreases in the biomass and height of rice seedling roots and shoots were observed in the PLA MP treatment. This study provides evidence that bio-based MPs may have a more severe impact on crop growth than petroleum-based MPs.