受生物启发的 Cu2O 阴极可在电-芬顿中捕获 O2 并促进氧化,用于磺胺噻唑衰变。

Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-10 DOI:10.1016/j.jhazmat.2024.135484
Minghui Liu, Neng Li, Shiyu Meng, Shilin Yang, Baojian Jing, Jiayu Zhang, Jizhou Jiang, Shan Qiu, Fengxia Deng
{"title":"受生物启发的 Cu2O 阴极可在电-芬顿中捕获 O2 并促进氧化,用于磺胺噻唑衰变。","authors":"Minghui Liu, Neng Li, Shiyu Meng, Shilin Yang, Baojian Jing, Jiayu Zhang, Jizhou Jiang, Shan Qiu, Fengxia Deng","doi":"10.1016/j.jhazmat.2024.135484","DOIUrl":null,"url":null,"abstract":"<p><p>A hydrophobic Cu<sub>2</sub>O cathode (Cu<sub>x</sub>O-L) was designed to solve the challenge of low oxidation ability in electro-Fenton (EF) for treating emerging pollutants. This fabrication process involved forming Cu(OH)<sub>2</sub> nanorods by oxidizing copper foam (Cu-F) with (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, followed by coating them with glucose via hydrothermal treatment. Finally, a self-assembled monolayer of 1-octadecanethiol was introduced to create a low-surface-energy, functionalized Cu<sub>x</sub>O-L cathode. Results exhibited an approximately 7.9-fold increase in hydroxyl radical (·OH) generation compared to the initial Cu-F. This enhancement was attributed to two key factors: (Ⅰ) the superior O<sub>2</sub>-capturing ability of Cu<sub>x</sub>O-L cathode, which led to high H<sub>2</sub>O<sub>2</sub> production due to a 2 nm thick hydrophobic gas layer facilitated O<sub>2</sub>-capturing; (Ⅱ) a relative high concentration of Cu<sup>+</sup> at the Cu<sub>x</sub>O-L cathode promoted the activation of H<sub>2</sub>O<sub>2</sub> into·OH. In addition, the performance of EF with the Cu<sub>x</sub>O-L cathode using sulfathiazole (STZ) as a model pollutant was evaluated. This study offers valuable insights into the design of O<sub>2</sub>-capturing cathodes in EF processes, particularly for treating emerging organic pollutants.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-inspired Cu<sub>2</sub>O cathode for O<sub>2</sub> capturing and oxidation boosting in electro-Fenton for sulfathiazole decay.\",\"authors\":\"Minghui Liu, Neng Li, Shiyu Meng, Shilin Yang, Baojian Jing, Jiayu Zhang, Jizhou Jiang, Shan Qiu, Fengxia Deng\",\"doi\":\"10.1016/j.jhazmat.2024.135484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A hydrophobic Cu<sub>2</sub>O cathode (Cu<sub>x</sub>O-L) was designed to solve the challenge of low oxidation ability in electro-Fenton (EF) for treating emerging pollutants. This fabrication process involved forming Cu(OH)<sub>2</sub> nanorods by oxidizing copper foam (Cu-F) with (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, followed by coating them with glucose via hydrothermal treatment. Finally, a self-assembled monolayer of 1-octadecanethiol was introduced to create a low-surface-energy, functionalized Cu<sub>x</sub>O-L cathode. Results exhibited an approximately 7.9-fold increase in hydroxyl radical (·OH) generation compared to the initial Cu-F. This enhancement was attributed to two key factors: (Ⅰ) the superior O<sub>2</sub>-capturing ability of Cu<sub>x</sub>O-L cathode, which led to high H<sub>2</sub>O<sub>2</sub> production due to a 2 nm thick hydrophobic gas layer facilitated O<sub>2</sub>-capturing; (Ⅱ) a relative high concentration of Cu<sup>+</sup> at the Cu<sub>x</sub>O-L cathode promoted the activation of H<sub>2</sub>O<sub>2</sub> into·OH. In addition, the performance of EF with the Cu<sub>x</sub>O-L cathode using sulfathiazole (STZ) as a model pollutant was evaluated. This study offers valuable insights into the design of O<sub>2</sub>-capturing cathodes in EF processes, particularly for treating emerging organic pollutants.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们设计了一种疏水性 Cu2O 阴极(CuxO-L),以解决电-芬顿(EF)处理新兴污染物时氧化能力低的难题。制备过程包括用 (NH4)2S2O8 氧化泡沫铜 (Cu-F),形成 Cu(OH)2 纳米棒,然后通过水热处理在纳米棒上涂覆葡萄糖。最后,引入 1-octadecanethiol 自组装单层,形成低表面能的功能化 CuxO-L 阴极。结果表明,与最初的 Cu-F 相比,羟基自由基 (-OH) 的生成量增加了约 7.9 倍。这种增强归因于两个关键因素:(Ⅰ)CuxO-L 阴极具有卓越的 O2 捕获能力,由于 2 nm 厚的疏水气层促进了 O2 捕获,从而产生了大量 H2O2;(Ⅱ)CuxO-L 阴极相对较高的 Cu+ 浓度促进了 H2O2 活化为-OH。此外,还以磺胺噻唑(STZ)为模型污染物评估了使用 CuxO-L 阴极的 EF 性能。这项研究为设计 EF 过程中的氧气捕获阴极,尤其是处理新出现的有机污染物提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-inspired Cu2O cathode for O2 capturing and oxidation boosting in electro-Fenton for sulfathiazole decay.

A hydrophobic Cu2O cathode (CuxO-L) was designed to solve the challenge of low oxidation ability in electro-Fenton (EF) for treating emerging pollutants. This fabrication process involved forming Cu(OH)2 nanorods by oxidizing copper foam (Cu-F) with (NH4)2S2O8, followed by coating them with glucose via hydrothermal treatment. Finally, a self-assembled monolayer of 1-octadecanethiol was introduced to create a low-surface-energy, functionalized CuxO-L cathode. Results exhibited an approximately 7.9-fold increase in hydroxyl radical (·OH) generation compared to the initial Cu-F. This enhancement was attributed to two key factors: (Ⅰ) the superior O2-capturing ability of CuxO-L cathode, which led to high H2O2 production due to a 2 nm thick hydrophobic gas layer facilitated O2-capturing; (Ⅱ) a relative high concentration of Cu+ at the CuxO-L cathode promoted the activation of H2O2 into·OH. In addition, the performance of EF with the CuxO-L cathode using sulfathiazole (STZ) as a model pollutant was evaluated. This study offers valuable insights into the design of O2-capturing cathodes in EF processes, particularly for treating emerging organic pollutants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信