Stephan Ritzert , Annabell Rjosk , Hagen Holthusen , Thea Lautenschläger , Christoph Neinhuis , Stefanie Reese
{"title":"盾形叶叶柄-叶片过渡区的力学模型。","authors":"Stephan Ritzert , Annabell Rjosk , Hagen Holthusen , Thea Lautenschläger , Christoph Neinhuis , Stefanie Reese","doi":"10.1016/j.actbio.2024.08.019","DOIUrl":null,"url":null,"abstract":"<div><div>Plant leaves have to deal with various environmental influences. While the mechanical properties of petiole and lamina are generally well studied, only few studies focused on the properties of the transition zone joining petiole and lamina. Especially in peltate leaves, characterised by the attachment of the petiole to the abaxial side of the lamina, the 3D leaf architecture imposes specific mechanical stresses on the petiole and petiole-lamina transition zone. Several principles of internal anatomical organisation have been identified. Since the mechanical characterisation of the transition zone by direct measurements is difficult, we explored the mechanical properties and load-bearing mechanisms by finite-element simulations. We simulate the petiole-lamina transition zone with five different fibre models that were abstracted from CT data. For comparison, three different load cases were defined and tested in the simulation. In the proposed model, the fibres are represented in a smeared sense, where we considered transverse isotropic behavior in elements containing fibres. In a pre-processing step, we determined the fibre content, direction, and dispersion and fed them into our model. The simulations show that initially, matrix and fibres carry the load together. After relaxation of the stresses in the matrix, the fibres carry most of the load. Load dissipation and stiffness differ according to fibre arrangement and depend, among other things, on orientation and cross-linking of the fibres and fibre amount. Even though the presented method is a simplified approach, it is able to show the different load-bearing capacities of the presented fibre arrangements.</div></div><div><h3>Statement of significance</h3><div>In plant leaves, the petiole-lamina transition zone is an important structural element facilitating water and nutrient transport, as well as load dissipation from the lamina into the petiole. Especially in peltate leaves, the 3D leaf architecture imposes specific mechanical stresses on the petiole-lamina transition zone. This study aims at investigating its mechanical behavior using finite-element simulations. The proposed continuum mechanical anisotropic viscoelastic material model is able to simulate the transition zone under different loads while also considering different fibre arrangements. The simulations highlight the load-bearing mechanisms of different fibre organisations, show the mechanical significance of the petiole-lamina transition zone and can be used in the design of a future biomimetic junction in construction.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"187 ","pages":"Pages 278-290"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical modeling of the petiole-lamina transition zone of peltate leaves\",\"authors\":\"Stephan Ritzert , Annabell Rjosk , Hagen Holthusen , Thea Lautenschläger , Christoph Neinhuis , Stefanie Reese\",\"doi\":\"10.1016/j.actbio.2024.08.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plant leaves have to deal with various environmental influences. While the mechanical properties of petiole and lamina are generally well studied, only few studies focused on the properties of the transition zone joining petiole and lamina. Especially in peltate leaves, characterised by the attachment of the petiole to the abaxial side of the lamina, the 3D leaf architecture imposes specific mechanical stresses on the petiole and petiole-lamina transition zone. Several principles of internal anatomical organisation have been identified. Since the mechanical characterisation of the transition zone by direct measurements is difficult, we explored the mechanical properties and load-bearing mechanisms by finite-element simulations. We simulate the petiole-lamina transition zone with five different fibre models that were abstracted from CT data. For comparison, three different load cases were defined and tested in the simulation. In the proposed model, the fibres are represented in a smeared sense, where we considered transverse isotropic behavior in elements containing fibres. In a pre-processing step, we determined the fibre content, direction, and dispersion and fed them into our model. The simulations show that initially, matrix and fibres carry the load together. After relaxation of the stresses in the matrix, the fibres carry most of the load. Load dissipation and stiffness differ according to fibre arrangement and depend, among other things, on orientation and cross-linking of the fibres and fibre amount. Even though the presented method is a simplified approach, it is able to show the different load-bearing capacities of the presented fibre arrangements.</div></div><div><h3>Statement of significance</h3><div>In plant leaves, the petiole-lamina transition zone is an important structural element facilitating water and nutrient transport, as well as load dissipation from the lamina into the petiole. Especially in peltate leaves, the 3D leaf architecture imposes specific mechanical stresses on the petiole-lamina transition zone. This study aims at investigating its mechanical behavior using finite-element simulations. The proposed continuum mechanical anisotropic viscoelastic material model is able to simulate the transition zone under different loads while also considering different fibre arrangements. The simulations highlight the load-bearing mechanisms of different fibre organisations, show the mechanical significance of the petiole-lamina transition zone and can be used in the design of a future biomimetic junction in construction.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"187 \",\"pages\":\"Pages 278-290\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S174270612400463X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174270612400463X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Mechanical modeling of the petiole-lamina transition zone of peltate leaves
Plant leaves have to deal with various environmental influences. While the mechanical properties of petiole and lamina are generally well studied, only few studies focused on the properties of the transition zone joining petiole and lamina. Especially in peltate leaves, characterised by the attachment of the petiole to the abaxial side of the lamina, the 3D leaf architecture imposes specific mechanical stresses on the petiole and petiole-lamina transition zone. Several principles of internal anatomical organisation have been identified. Since the mechanical characterisation of the transition zone by direct measurements is difficult, we explored the mechanical properties and load-bearing mechanisms by finite-element simulations. We simulate the petiole-lamina transition zone with five different fibre models that were abstracted from CT data. For comparison, three different load cases were defined and tested in the simulation. In the proposed model, the fibres are represented in a smeared sense, where we considered transverse isotropic behavior in elements containing fibres. In a pre-processing step, we determined the fibre content, direction, and dispersion and fed them into our model. The simulations show that initially, matrix and fibres carry the load together. After relaxation of the stresses in the matrix, the fibres carry most of the load. Load dissipation and stiffness differ according to fibre arrangement and depend, among other things, on orientation and cross-linking of the fibres and fibre amount. Even though the presented method is a simplified approach, it is able to show the different load-bearing capacities of the presented fibre arrangements.
Statement of significance
In plant leaves, the petiole-lamina transition zone is an important structural element facilitating water and nutrient transport, as well as load dissipation from the lamina into the petiole. Especially in peltate leaves, the 3D leaf architecture imposes specific mechanical stresses on the petiole-lamina transition zone. This study aims at investigating its mechanical behavior using finite-element simulations. The proposed continuum mechanical anisotropic viscoelastic material model is able to simulate the transition zone under different loads while also considering different fibre arrangements. The simulations highlight the load-bearing mechanisms of different fibre organisations, show the mechanical significance of the petiole-lamina transition zone and can be used in the design of a future biomimetic junction in construction.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.