{"title":"通过双性分支过程建立半同性生物物种的数学模型。","authors":"Manuel Molina, Manuel Mota, Alfonso Ramos","doi":"10.3934/mbe.2024280","DOIUrl":null,"url":null,"abstract":"<p><p>This research focused its interest on the mathematical modeling of the demographic dynamics of semelparous biological species through branching processes. We continued the research line started in previous papers, providing new methodological contributions of biological and ecological interest. We determined the probability distribution associated with the number of generations elapsed before the possible extinction of the population in its natural habitat. We mathematically modeled the phenomenon of populating or repopulating habitats with semelparous species. We also proposed estimates for the offspring parameters governing the reproductive strategies of the species. To this purpose, we used the maximum likelihood and Bayesian estimation methodologies. The statistical results are illustrated through a simulated example contextualized with Labord chameleon (Furcifer labordi) species.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6407-6424"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling in semelparous biological species through two-sex branching processes.\",\"authors\":\"Manuel Molina, Manuel Mota, Alfonso Ramos\",\"doi\":\"10.3934/mbe.2024280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research focused its interest on the mathematical modeling of the demographic dynamics of semelparous biological species through branching processes. We continued the research line started in previous papers, providing new methodological contributions of biological and ecological interest. We determined the probability distribution associated with the number of generations elapsed before the possible extinction of the population in its natural habitat. We mathematically modeled the phenomenon of populating or repopulating habitats with semelparous species. We also proposed estimates for the offspring parameters governing the reproductive strategies of the species. To this purpose, we used the maximum likelihood and Bayesian estimation methodologies. The statistical results are illustrated through a simulated example contextualized with Labord chameleon (Furcifer labordi) species.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 6\",\"pages\":\"6407-6424\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024280\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024280","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Mathematical modeling in semelparous biological species through two-sex branching processes.
This research focused its interest on the mathematical modeling of the demographic dynamics of semelparous biological species through branching processes. We continued the research line started in previous papers, providing new methodological contributions of biological and ecological interest. We determined the probability distribution associated with the number of generations elapsed before the possible extinction of the population in its natural habitat. We mathematically modeled the phenomenon of populating or repopulating habitats with semelparous species. We also proposed estimates for the offspring parameters governing the reproductive strategies of the species. To this purpose, we used the maximum likelihood and Bayesian estimation methodologies. The statistical results are illustrated through a simulated example contextualized with Labord chameleon (Furcifer labordi) species.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).