通过双性分支过程建立半同性生物物种的数学模型。

IF 2.6 4区 工程技术 Q1 Mathematics
Manuel Molina, Manuel Mota, Alfonso Ramos
{"title":"通过双性分支过程建立半同性生物物种的数学模型。","authors":"Manuel Molina, Manuel Mota, Alfonso Ramos","doi":"10.3934/mbe.2024280","DOIUrl":null,"url":null,"abstract":"<p><p>This research focused its interest on the mathematical modeling of the demographic dynamics of semelparous biological species through branching processes. We continued the research line started in previous papers, providing new methodological contributions of biological and ecological interest. We determined the probability distribution associated with the number of generations elapsed before the possible extinction of the population in its natural habitat. We mathematically modeled the phenomenon of populating or repopulating habitats with semelparous species. We also proposed estimates for the offspring parameters governing the reproductive strategies of the species. To this purpose, we used the maximum likelihood and Bayesian estimation methodologies. The statistical results are illustrated through a simulated example contextualized with Labord chameleon (Furcifer labordi) species.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6407-6424"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling in semelparous biological species through two-sex branching processes.\",\"authors\":\"Manuel Molina, Manuel Mota, Alfonso Ramos\",\"doi\":\"10.3934/mbe.2024280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research focused its interest on the mathematical modeling of the demographic dynamics of semelparous biological species through branching processes. We continued the research line started in previous papers, providing new methodological contributions of biological and ecological interest. We determined the probability distribution associated with the number of generations elapsed before the possible extinction of the population in its natural habitat. We mathematically modeled the phenomenon of populating or repopulating habitats with semelparous species. We also proposed estimates for the offspring parameters governing the reproductive strategies of the species. To this purpose, we used the maximum likelihood and Bayesian estimation methodologies. The statistical results are illustrated through a simulated example contextualized with Labord chameleon (Furcifer labordi) species.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 6\",\"pages\":\"6407-6424\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024280\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024280","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的重点是通过分支过程对半生生物物种的人口动态进行数学建模。我们延续了前几篇论文的研究思路,提供了具有生物学和生态学意义的新方法。我们确定了种群在其自然栖息地可能灭绝之前的世代数的相关概率分布。我们对半数物种在栖息地繁殖或再繁殖的现象进行了数学建模。我们还提出了关于物种繁殖策略的后代参数估计。为此,我们使用了最大似然法和贝叶斯估计法。统计结果通过一个以拉博德变色龙(Furcifer labordi)物种为背景的模拟实例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical modeling in semelparous biological species through two-sex branching processes.

This research focused its interest on the mathematical modeling of the demographic dynamics of semelparous biological species through branching processes. We continued the research line started in previous papers, providing new methodological contributions of biological and ecological interest. We determined the probability distribution associated with the number of generations elapsed before the possible extinction of the population in its natural habitat. We mathematically modeled the phenomenon of populating or repopulating habitats with semelparous species. We also proposed estimates for the offspring parameters governing the reproductive strategies of the species. To this purpose, we used the maximum likelihood and Bayesian estimation methodologies. The statistical results are illustrated through a simulated example contextualized with Labord chameleon (Furcifer labordi) species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信