超参数优化:经典、加速、在线、多目标和工具。

IF 2.6 4区 工程技术 Q1 Mathematics
Jia Mian Tan, Haoran Liao, Wei Liu, Changjun Fan, Jincai Huang, Zhong Liu, Junchi Yan
{"title":"超参数优化:经典、加速、在线、多目标和工具。","authors":"Jia Mian Tan, Haoran Liao, Wei Liu, Changjun Fan, Jincai Huang, Zhong Liu, Junchi Yan","doi":"10.3934/mbe.2024275","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperparameter optimization (HPO) has been well-developed and evolved into a well-established research topic over the decades. With the success and wide application of deep learning, HPO has garnered increased attention, particularly within the realm of machine learning model training and inference. The primary objective is to mitigate the challenges associated with manual hyperparameter tuning, which can be ad-hoc, reliant on human expertise, and consequently hinders reproducibility while inflating deployment costs. Recognizing the growing significance of HPO, this paper surveyed classical HPO methods, approaches for accelerating the optimization process, HPO in an online setting (dynamic algorithm configuration, DAC), and when there is more than one objective to optimize (multi-objective HPO). Acceleration strategies were categorized into multi-fidelity, bandit-based, and early stopping; DAC algorithms encompassed gradient-based, population-based, and reinforcement learning-based methods; multi-objective HPO can be approached via scalarization, metaheuristics, and model-based algorithms tailored for multi-objective situation. A tabulated overview of popular frameworks and tools for HPO was provided, catering to the interests of practitioners.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 6","pages":"6289-6335"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperparameter optimization: Classics, acceleration, online, multi-objective, and tools.\",\"authors\":\"Jia Mian Tan, Haoran Liao, Wei Liu, Changjun Fan, Jincai Huang, Zhong Liu, Junchi Yan\",\"doi\":\"10.3934/mbe.2024275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperparameter optimization (HPO) has been well-developed and evolved into a well-established research topic over the decades. With the success and wide application of deep learning, HPO has garnered increased attention, particularly within the realm of machine learning model training and inference. The primary objective is to mitigate the challenges associated with manual hyperparameter tuning, which can be ad-hoc, reliant on human expertise, and consequently hinders reproducibility while inflating deployment costs. Recognizing the growing significance of HPO, this paper surveyed classical HPO methods, approaches for accelerating the optimization process, HPO in an online setting (dynamic algorithm configuration, DAC), and when there is more than one objective to optimize (multi-objective HPO). Acceleration strategies were categorized into multi-fidelity, bandit-based, and early stopping; DAC algorithms encompassed gradient-based, population-based, and reinforcement learning-based methods; multi-objective HPO can be approached via scalarization, metaheuristics, and model-based algorithms tailored for multi-objective situation. A tabulated overview of popular frameworks and tools for HPO was provided, catering to the interests of practitioners.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 6\",\"pages\":\"6289-6335\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024275\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024275","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,超参数优化(HPO)得到了很好的发展,并逐渐成为一个成熟的研究课题。随着深度学习的成功和广泛应用,HPO 赢得了越来越多的关注,特别是在机器学习模型训练和推理领域。其主要目的是减轻与人工超参数调整相关的挑战,因为人工超参数调整可能是临时性的,依赖于人类的专业知识,因此会阻碍可重复性,同时增加部署成本。认识到 HPO 的重要性与日俱增,本文研究了经典 HPO 方法、加速优化过程的方法、在线环境下的 HPO(动态算法配置,DAC),以及有多个目标需要优化时的 HPO(多目标 HPO)。加速策略分为多保真、基于强盗和早期停止;DAC 算法包括基于梯度、基于群体和基于强化学习的方法;多目标 HPO 可以通过标量化、元启发式和基于模型的算法来实现,这些算法都是为多目标情况量身定制的。针对实践者的兴趣,以表格形式概述了 HPO 的流行框架和工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperparameter optimization: Classics, acceleration, online, multi-objective, and tools.

Hyperparameter optimization (HPO) has been well-developed and evolved into a well-established research topic over the decades. With the success and wide application of deep learning, HPO has garnered increased attention, particularly within the realm of machine learning model training and inference. The primary objective is to mitigate the challenges associated with manual hyperparameter tuning, which can be ad-hoc, reliant on human expertise, and consequently hinders reproducibility while inflating deployment costs. Recognizing the growing significance of HPO, this paper surveyed classical HPO methods, approaches for accelerating the optimization process, HPO in an online setting (dynamic algorithm configuration, DAC), and when there is more than one objective to optimize (multi-objective HPO). Acceleration strategies were categorized into multi-fidelity, bandit-based, and early stopping; DAC algorithms encompassed gradient-based, population-based, and reinforcement learning-based methods; multi-objective HPO can be approached via scalarization, metaheuristics, and model-based algorithms tailored for multi-objective situation. A tabulated overview of popular frameworks and tools for HPO was provided, catering to the interests of practitioners.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信