{"title":"颅脑损伤后肺部感染患者的病原体分布及 sTREM-1 和 miR-126 水平分析。","authors":"Lei Gu, Yun Zhen, Zhenlin Huang, Tianbao Chen, Fuxiong Li, Chen Kaipeng","doi":"10.3233/THC-240749","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>sTREM-1H and miR-126 play crucial roles in inflammation and immune responses, yet their involvement in patients with pulmonary infection following cranial injury remains understudied.</p><p><strong>Objective: </strong>The distribution of pathogens causing infection in patients with pulmonary infection after craniocerebral injury was explored, and the changes in the levels of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) and miR-126 in peripheral blood were analyzed.</p><p><strong>Methods: </strong>In this study, 60 patients (study group) with postoperative lung infection in craniocerebral injury treated from January 2019 to December 2, 2021, and 60 patients without lung infection were selected as the control group. The study group received anti-infection treatment. The infection pathogen of the study group was tested, and the changes of sTREM-1 and miR-126 levels in the peripheral blood of the study and control groups were recorded to explore the diagnosis and predictive Value of prognostic death.</p><p><strong>Results: </strong>66 pathogens were detected, including 18 gram-positive bacteria, 42 gram-negative bacteria, and 6 fungi. The sTREM-1 level was higher than the control group, and the miR-126 level was lower than the control group. By ROC curve analysis, the diagnostic AUC values of both patients were 0.907 and 0.848, respectively (P< 0.05). Compared to those in the study group, patients had decreased sTREM-1 levels and increased miR-126 levels after treatment (P< 0.05). Compared with the survival group, patients in the death group had increased sTREM-1 levels and decreased miR-126 levels, and ROC curve analysis, the predicted AUC death values were 0.854 and 0.862, respectively.</p><p><strong>Conclusion: </strong>Gram-negative bacteria, with increased peripheral sTREM-1 levels and decreased miR-126 levels. The levels of sTREM-1 and miR-126 have specific diagnostic and prognostic Values for pulmonary infection after craniocerebral injury. However, the study's conclusions are drawn from a limited sample and short-term data, which might limit their broader applicability. Future studies with larger populations and longitudinal designs are required to confirm these findings and determine these biomarkers' robustness across different settings. Further research should also explore how these biomarkers influence patient outcomes in craniocerebral injuries.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of pathogen distribution and sTREM-1 and miR-126 levels in patients with pulmonary infection after craniocerebral injury.\",\"authors\":\"Lei Gu, Yun Zhen, Zhenlin Huang, Tianbao Chen, Fuxiong Li, Chen Kaipeng\",\"doi\":\"10.3233/THC-240749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>sTREM-1H and miR-126 play crucial roles in inflammation and immune responses, yet their involvement in patients with pulmonary infection following cranial injury remains understudied.</p><p><strong>Objective: </strong>The distribution of pathogens causing infection in patients with pulmonary infection after craniocerebral injury was explored, and the changes in the levels of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) and miR-126 in peripheral blood were analyzed.</p><p><strong>Methods: </strong>In this study, 60 patients (study group) with postoperative lung infection in craniocerebral injury treated from January 2019 to December 2, 2021, and 60 patients without lung infection were selected as the control group. The study group received anti-infection treatment. The infection pathogen of the study group was tested, and the changes of sTREM-1 and miR-126 levels in the peripheral blood of the study and control groups were recorded to explore the diagnosis and predictive Value of prognostic death.</p><p><strong>Results: </strong>66 pathogens were detected, including 18 gram-positive bacteria, 42 gram-negative bacteria, and 6 fungi. The sTREM-1 level was higher than the control group, and the miR-126 level was lower than the control group. By ROC curve analysis, the diagnostic AUC values of both patients were 0.907 and 0.848, respectively (P< 0.05). Compared to those in the study group, patients had decreased sTREM-1 levels and increased miR-126 levels after treatment (P< 0.05). Compared with the survival group, patients in the death group had increased sTREM-1 levels and decreased miR-126 levels, and ROC curve analysis, the predicted AUC death values were 0.854 and 0.862, respectively.</p><p><strong>Conclusion: </strong>Gram-negative bacteria, with increased peripheral sTREM-1 levels and decreased miR-126 levels. The levels of sTREM-1 and miR-126 have specific diagnostic and prognostic Values for pulmonary infection after craniocerebral injury. However, the study's conclusions are drawn from a limited sample and short-term data, which might limit their broader applicability. Future studies with larger populations and longitudinal designs are required to confirm these findings and determine these biomarkers' robustness across different settings. Further research should also explore how these biomarkers influence patient outcomes in craniocerebral injuries.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/THC-240749\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-240749","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of pathogen distribution and sTREM-1 and miR-126 levels in patients with pulmonary infection after craniocerebral injury.
Background: sTREM-1H and miR-126 play crucial roles in inflammation and immune responses, yet their involvement in patients with pulmonary infection following cranial injury remains understudied.
Objective: The distribution of pathogens causing infection in patients with pulmonary infection after craniocerebral injury was explored, and the changes in the levels of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) and miR-126 in peripheral blood were analyzed.
Methods: In this study, 60 patients (study group) with postoperative lung infection in craniocerebral injury treated from January 2019 to December 2, 2021, and 60 patients without lung infection were selected as the control group. The study group received anti-infection treatment. The infection pathogen of the study group was tested, and the changes of sTREM-1 and miR-126 levels in the peripheral blood of the study and control groups were recorded to explore the diagnosis and predictive Value of prognostic death.
Results: 66 pathogens were detected, including 18 gram-positive bacteria, 42 gram-negative bacteria, and 6 fungi. The sTREM-1 level was higher than the control group, and the miR-126 level was lower than the control group. By ROC curve analysis, the diagnostic AUC values of both patients were 0.907 and 0.848, respectively (P< 0.05). Compared to those in the study group, patients had decreased sTREM-1 levels and increased miR-126 levels after treatment (P< 0.05). Compared with the survival group, patients in the death group had increased sTREM-1 levels and decreased miR-126 levels, and ROC curve analysis, the predicted AUC death values were 0.854 and 0.862, respectively.
Conclusion: Gram-negative bacteria, with increased peripheral sTREM-1 levels and decreased miR-126 levels. The levels of sTREM-1 and miR-126 have specific diagnostic and prognostic Values for pulmonary infection after craniocerebral injury. However, the study's conclusions are drawn from a limited sample and short-term data, which might limit their broader applicability. Future studies with larger populations and longitudinal designs are required to confirm these findings and determine these biomarkers' robustness across different settings. Further research should also explore how these biomarkers influence patient outcomes in craniocerebral injuries.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.