{"title":"利用基于变换的函数和机器学习算法,实现高灵敏度的高精度脑肿瘤检测。","authors":"Ashish Bhatt, Vineeta Saxena Nigam","doi":"10.3233/THC-240052","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brain tumor is an extremely dangerous disease with a very high mortality rate worldwide. Detecting brain tumors accurately is crucial due to the varying appearance of tumor cells and the dimensional irregularities in their growth. This poses a significant challenge for detection algorithms. Currently, there are numerous algorithms utilized for this purpose, ranging from transform-based methods to those rooted in machine learning techniques. These algorithms aim to enhance the accuracy of detection despite the complexities involved in identifying brain tumor cells. The major limitation of these algorithms is the mapping of extracted features of a brain tumor in the classification algorithms.</p><p><strong>Objective: </strong>To employ a combination of transform methods to extract texture feature from brain tumor images.</p><p><strong>Methods: </strong>This paper employs a combination of transform methods based on sub band decomposition for texture feature extraction from MRI scans, hybrid feature optimization methods using firefly and glow-worm algorithms for selection of feature, employment of MKSVM algorithm and stacking ensemble classifier for classification and application of the feature of fusion of different feature extraction methods.</p><p><strong>Results: </strong>The algorithm under consideration has been put into practice using MATLAB, utilizing datasets from BRATS (Brain Tumor Segmentation) for the years 2013, 2015, and 2018. These datasets serve as the foundation for testing and validating the algorithm's performance across different time periods, providing a comprehensive assessment of its effectiveness in detecting brain tumors. The proposed algorithm achieves maximum detection accuracy, detection sensitivity and specificity up to 98%, 99% and 99.5% respectively. The experimental outcomes showcase the efficiency of the algorithm in detection of brain tumor.</p><p><strong>Conclusion: </strong>The proposed work mainly contributes in brain tumor detection in the following aspects: a) use of combination of transform methods for texture feature extraction from MRI scans b) hybrid feature selection methods using firefly and glow-worm optimization algorithms for selection of feature c) employment of MKSVM algorithm and stacking ensemble classifier for classification and application of the feature of fusion of different feature extraction methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly accurate brain tumor detection with high sensitivity using transform-based functions and machine learning algorithms.\",\"authors\":\"Ashish Bhatt, Vineeta Saxena Nigam\",\"doi\":\"10.3233/THC-240052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Brain tumor is an extremely dangerous disease with a very high mortality rate worldwide. Detecting brain tumors accurately is crucial due to the varying appearance of tumor cells and the dimensional irregularities in their growth. This poses a significant challenge for detection algorithms. Currently, there are numerous algorithms utilized for this purpose, ranging from transform-based methods to those rooted in machine learning techniques. These algorithms aim to enhance the accuracy of detection despite the complexities involved in identifying brain tumor cells. The major limitation of these algorithms is the mapping of extracted features of a brain tumor in the classification algorithms.</p><p><strong>Objective: </strong>To employ a combination of transform methods to extract texture feature from brain tumor images.</p><p><strong>Methods: </strong>This paper employs a combination of transform methods based on sub band decomposition for texture feature extraction from MRI scans, hybrid feature optimization methods using firefly and glow-worm algorithms for selection of feature, employment of MKSVM algorithm and stacking ensemble classifier for classification and application of the feature of fusion of different feature extraction methods.</p><p><strong>Results: </strong>The algorithm under consideration has been put into practice using MATLAB, utilizing datasets from BRATS (Brain Tumor Segmentation) for the years 2013, 2015, and 2018. These datasets serve as the foundation for testing and validating the algorithm's performance across different time periods, providing a comprehensive assessment of its effectiveness in detecting brain tumors. The proposed algorithm achieves maximum detection accuracy, detection sensitivity and specificity up to 98%, 99% and 99.5% respectively. The experimental outcomes showcase the efficiency of the algorithm in detection of brain tumor.</p><p><strong>Conclusion: </strong>The proposed work mainly contributes in brain tumor detection in the following aspects: a) use of combination of transform methods for texture feature extraction from MRI scans b) hybrid feature selection methods using firefly and glow-worm optimization algorithms for selection of feature c) employment of MKSVM algorithm and stacking ensemble classifier for classification and application of the feature of fusion of different feature extraction methods.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/THC-240052\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-240052","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly accurate brain tumor detection with high sensitivity using transform-based functions and machine learning algorithms.
Background: Brain tumor is an extremely dangerous disease with a very high mortality rate worldwide. Detecting brain tumors accurately is crucial due to the varying appearance of tumor cells and the dimensional irregularities in their growth. This poses a significant challenge for detection algorithms. Currently, there are numerous algorithms utilized for this purpose, ranging from transform-based methods to those rooted in machine learning techniques. These algorithms aim to enhance the accuracy of detection despite the complexities involved in identifying brain tumor cells. The major limitation of these algorithms is the mapping of extracted features of a brain tumor in the classification algorithms.
Objective: To employ a combination of transform methods to extract texture feature from brain tumor images.
Methods: This paper employs a combination of transform methods based on sub band decomposition for texture feature extraction from MRI scans, hybrid feature optimization methods using firefly and glow-worm algorithms for selection of feature, employment of MKSVM algorithm and stacking ensemble classifier for classification and application of the feature of fusion of different feature extraction methods.
Results: The algorithm under consideration has been put into practice using MATLAB, utilizing datasets from BRATS (Brain Tumor Segmentation) for the years 2013, 2015, and 2018. These datasets serve as the foundation for testing and validating the algorithm's performance across different time periods, providing a comprehensive assessment of its effectiveness in detecting brain tumors. The proposed algorithm achieves maximum detection accuracy, detection sensitivity and specificity up to 98%, 99% and 99.5% respectively. The experimental outcomes showcase the efficiency of the algorithm in detection of brain tumor.
Conclusion: The proposed work mainly contributes in brain tumor detection in the following aspects: a) use of combination of transform methods for texture feature extraction from MRI scans b) hybrid feature selection methods using firefly and glow-worm optimization algorithms for selection of feature c) employment of MKSVM algorithm and stacking ensemble classifier for classification and application of the feature of fusion of different feature extraction methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.