Sulagna Sahu, Dane Hellwig, Zachary Morrison, Jeremy Hughes, Rosalind J. Sadleir
{"title":"利用磁共振神经成像技术无对比地观察三叉神经远端节段。","authors":"Sulagna Sahu, Dane Hellwig, Zachary Morrison, Jeremy Hughes, Rosalind J. Sadleir","doi":"10.1111/jon.13230","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>The 3-dimensional cranial nerve imaging (CRANI) sequence may assist visualization of anatomical details of extraforaminal cranial nerves and aid in clinical diagnosis and preoperative planning. In this study, we investigated the feasibility of using a combined CRANI and magnetization-prepared rapid-acquisition gradient-echo (MPRAGE) imaging protocol to comprehensively identify trigeminal nerve projections.</p>\n </section>\n \n <section>\n \n <h3> Method</h3>\n \n <p>We evaluated the detection of distal regions of three branches of the ophthalmic nerve (V1), three branches of the maxillary nerve (V2), and five branches of the mandibular nerve (V3) in seven healthy adult subjects, with and without contrast injection. Nerve branches were rated on a 5-point scale by three observers. Interobserver reliability was studied using weighted kappa statistics and percentage agreement.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Among V1 and V2 branches, the frontal nerve and infraorbital nerve were most successfully identified (average rating of 3.9, agreement >80%) in precontrast MPRAGE images. In V3 branches, lingual and inferior alveolar nerves were most successfully identified (average rating of 3.9, agreement >80%) in precontrast CRANI images, with an excellent average rating. In all cases except one, interobserver reliability was rated good to excellent. The buccal nerve was the only branch with a low average interobserver rating. Gadolinium contrast did not improve nerve segment visualization in our study. This may relate to the specific anatomic regions assessed, gadolinium dose, postcontrast image timing, and lack of pathology.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>A combined CRANI and MPRAGE protocol can be combined to visualize distal branches of V1, V2, and V3 and has potential for clinical use.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 5","pages":"595-602"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrast-free visualization of distal trigeminal nerve segments using MR neurography\",\"authors\":\"Sulagna Sahu, Dane Hellwig, Zachary Morrison, Jeremy Hughes, Rosalind J. Sadleir\",\"doi\":\"10.1111/jon.13230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Purpose</h3>\\n \\n <p>The 3-dimensional cranial nerve imaging (CRANI) sequence may assist visualization of anatomical details of extraforaminal cranial nerves and aid in clinical diagnosis and preoperative planning. In this study, we investigated the feasibility of using a combined CRANI and magnetization-prepared rapid-acquisition gradient-echo (MPRAGE) imaging protocol to comprehensively identify trigeminal nerve projections.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Method</h3>\\n \\n <p>We evaluated the detection of distal regions of three branches of the ophthalmic nerve (V1), three branches of the maxillary nerve (V2), and five branches of the mandibular nerve (V3) in seven healthy adult subjects, with and without contrast injection. Nerve branches were rated on a 5-point scale by three observers. Interobserver reliability was studied using weighted kappa statistics and percentage agreement.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Among V1 and V2 branches, the frontal nerve and infraorbital nerve were most successfully identified (average rating of 3.9, agreement >80%) in precontrast MPRAGE images. In V3 branches, lingual and inferior alveolar nerves were most successfully identified (average rating of 3.9, agreement >80%) in precontrast CRANI images, with an excellent average rating. In all cases except one, interobserver reliability was rated good to excellent. The buccal nerve was the only branch with a low average interobserver rating. Gadolinium contrast did not improve nerve segment visualization in our study. This may relate to the specific anatomic regions assessed, gadolinium dose, postcontrast image timing, and lack of pathology.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>A combined CRANI and MPRAGE protocol can be combined to visualize distal branches of V1, V2, and V3 and has potential for clinical use.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 5\",\"pages\":\"595-602\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13230\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13230","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Contrast-free visualization of distal trigeminal nerve segments using MR neurography
Background and Purpose
The 3-dimensional cranial nerve imaging (CRANI) sequence may assist visualization of anatomical details of extraforaminal cranial nerves and aid in clinical diagnosis and preoperative planning. In this study, we investigated the feasibility of using a combined CRANI and magnetization-prepared rapid-acquisition gradient-echo (MPRAGE) imaging protocol to comprehensively identify trigeminal nerve projections.
Method
We evaluated the detection of distal regions of three branches of the ophthalmic nerve (V1), three branches of the maxillary nerve (V2), and five branches of the mandibular nerve (V3) in seven healthy adult subjects, with and without contrast injection. Nerve branches were rated on a 5-point scale by three observers. Interobserver reliability was studied using weighted kappa statistics and percentage agreement.
Results
Among V1 and V2 branches, the frontal nerve and infraorbital nerve were most successfully identified (average rating of 3.9, agreement >80%) in precontrast MPRAGE images. In V3 branches, lingual and inferior alveolar nerves were most successfully identified (average rating of 3.9, agreement >80%) in precontrast CRANI images, with an excellent average rating. In all cases except one, interobserver reliability was rated good to excellent. The buccal nerve was the only branch with a low average interobserver rating. Gadolinium contrast did not improve nerve segment visualization in our study. This may relate to the specific anatomic regions assessed, gadolinium dose, postcontrast image timing, and lack of pathology.
Conclusion
A combined CRANI and MPRAGE protocol can be combined to visualize distal branches of V1, V2, and V3 and has potential for clinical use.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!