Claudia S. Rodriguez Torres , Nicole B. Wicker , Victória Puccini de Castro , Mariya Stefinko , Daniel C. Bennett , Brooke Bernhardt , Melissa Garcia Montes de Oca , Sainabou Jallow , Katelyn Flitcroft , Jessica-Jae S. Palalay , Omar A. Payán Parra , Yaakov E. Stern , Michael R. Koelle , Cindy Voisine , Ian G. Woods , Te-Wen Lo , Michael J. Stern , Claire C. de la Cova
{"title":"草履虫蛋白 SOC-3 允许 EGL-15 FGF 受体以另一种模式进行信号转导。","authors":"Claudia S. Rodriguez Torres , Nicole B. Wicker , Victória Puccini de Castro , Mariya Stefinko , Daniel C. Bennett , Brooke Bernhardt , Melissa Garcia Montes de Oca , Sainabou Jallow , Katelyn Flitcroft , Jessica-Jae S. Palalay , Omar A. Payán Parra , Yaakov E. Stern , Michael R. Koelle , Cindy Voisine , Ian G. Woods , Te-Wen Lo , Michael J. Stern , Claire C. de la Cova","doi":"10.1016/j.ydbio.2024.08.014","DOIUrl":null,"url":null,"abstract":"<div><p>Fibroblast Growth Factors and their receptors (FGFRs) comprise a cell signaling module that can stimulate signaling by Ras and the kinases Raf, MEK, and ERK to regulate animal development and homeostatic functions. In <em>Caenorhabditis elegans,</em> the sole FGFR ortholog EGL-15 acts with the GRB2 ortholog SEM-5 to promote chemoattraction and migration by the sex myoblasts (SMs) and fluid homeostasis by the hypodermis (Hyp7). Cell-specific differences in EGL-15 signaling were suggested by the phenotypes caused by <em>egl-15(n1457),</em> an allele that removes a region of its C-terminal domain (CTD) known to bind SEM-5. To determine how mutations altered EGL-15 activity in the SMs and Hyp7, we used the kinase reporter ERK-KTR to measure activation of the ERK ortholog MPK-1. Consequences of <em>egl-15(n1457)</em> were cell-specific, resulting in loss of MPK-1 activity in the SMs and elevated activity in Hyp7. Previous studies of Hyp7 showed that loss of the CLR-1 phosphatase causes a fluid homeostasis defect termed “Clear” that is suppressed by reduction of EGL-15 signaling, a phenotype termed “Suppressor of Clear” (Soc). To identify mechanisms that permit EGL-15 signaling in Hyp7, we conducted a genetic screen for Soc mutants in the <em>clr-1; egl-15(n1457)</em> genotype. We report the identification of SOC-3, a protein with putative SEM-5-binding motifs and PH and PTB domains similar to DOK and IRS proteins. In combination with the <em>egl-15(n1457)</em> mutation, loss of either <em>soc-3</em>, the GAB1 ortholog <em>soc-1</em>, or the SHP2 ortholog <em>ptp-2</em>, reduced MPK-1 activation. We generated alleles of <em>soc-3</em> to test the requirement for the SEM-5-binding motifs, finding that residue Tyr<sup>356</sup> is required for function. We propose that EGL-15-mediated SM chemoattraction relies solely on the direct interaction between SEM-5 and the EGL-15 CTD. In Hyp7, EGL-15 signaling uses two mechanisms: the direct SEM-5 binding mechanism; and an alternative, CTD-independent mechanism involving SOC-3, SOC-1, and PTP-2. This work demonstrates that FGF signaling uses distinct, tissue-specific mechanisms in development, and identifies SOC-3 as a potential adaptor that facilitates Ras pathway activation by FGFR.</p></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"516 ","pages":"Pages 183-195"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Caenorhabditis elegans protein SOC-3 permits an alternative mode of signal transduction by the EGL-15 FGF receptor\",\"authors\":\"Claudia S. Rodriguez Torres , Nicole B. Wicker , Victória Puccini de Castro , Mariya Stefinko , Daniel C. Bennett , Brooke Bernhardt , Melissa Garcia Montes de Oca , Sainabou Jallow , Katelyn Flitcroft , Jessica-Jae S. Palalay , Omar A. Payán Parra , Yaakov E. Stern , Michael R. Koelle , Cindy Voisine , Ian G. Woods , Te-Wen Lo , Michael J. Stern , Claire C. de la Cova\",\"doi\":\"10.1016/j.ydbio.2024.08.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fibroblast Growth Factors and their receptors (FGFRs) comprise a cell signaling module that can stimulate signaling by Ras and the kinases Raf, MEK, and ERK to regulate animal development and homeostatic functions. In <em>Caenorhabditis elegans,</em> the sole FGFR ortholog EGL-15 acts with the GRB2 ortholog SEM-5 to promote chemoattraction and migration by the sex myoblasts (SMs) and fluid homeostasis by the hypodermis (Hyp7). Cell-specific differences in EGL-15 signaling were suggested by the phenotypes caused by <em>egl-15(n1457),</em> an allele that removes a region of its C-terminal domain (CTD) known to bind SEM-5. To determine how mutations altered EGL-15 activity in the SMs and Hyp7, we used the kinase reporter ERK-KTR to measure activation of the ERK ortholog MPK-1. Consequences of <em>egl-15(n1457)</em> were cell-specific, resulting in loss of MPK-1 activity in the SMs and elevated activity in Hyp7. Previous studies of Hyp7 showed that loss of the CLR-1 phosphatase causes a fluid homeostasis defect termed “Clear” that is suppressed by reduction of EGL-15 signaling, a phenotype termed “Suppressor of Clear” (Soc). To identify mechanisms that permit EGL-15 signaling in Hyp7, we conducted a genetic screen for Soc mutants in the <em>clr-1; egl-15(n1457)</em> genotype. We report the identification of SOC-3, a protein with putative SEM-5-binding motifs and PH and PTB domains similar to DOK and IRS proteins. In combination with the <em>egl-15(n1457)</em> mutation, loss of either <em>soc-3</em>, the GAB1 ortholog <em>soc-1</em>, or the SHP2 ortholog <em>ptp-2</em>, reduced MPK-1 activation. We generated alleles of <em>soc-3</em> to test the requirement for the SEM-5-binding motifs, finding that residue Tyr<sup>356</sup> is required for function. We propose that EGL-15-mediated SM chemoattraction relies solely on the direct interaction between SEM-5 and the EGL-15 CTD. In Hyp7, EGL-15 signaling uses two mechanisms: the direct SEM-5 binding mechanism; and an alternative, CTD-independent mechanism involving SOC-3, SOC-1, and PTP-2. This work demonstrates that FGF signaling uses distinct, tissue-specific mechanisms in development, and identifies SOC-3 as a potential adaptor that facilitates Ras pathway activation by FGFR.</p></div>\",\"PeriodicalId\":11070,\"journal\":{\"name\":\"Developmental biology\",\"volume\":\"516 \",\"pages\":\"Pages 183-195\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012160624002197\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160624002197","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
The Caenorhabditis elegans protein SOC-3 permits an alternative mode of signal transduction by the EGL-15 FGF receptor
Fibroblast Growth Factors and their receptors (FGFRs) comprise a cell signaling module that can stimulate signaling by Ras and the kinases Raf, MEK, and ERK to regulate animal development and homeostatic functions. In Caenorhabditis elegans, the sole FGFR ortholog EGL-15 acts with the GRB2 ortholog SEM-5 to promote chemoattraction and migration by the sex myoblasts (SMs) and fluid homeostasis by the hypodermis (Hyp7). Cell-specific differences in EGL-15 signaling were suggested by the phenotypes caused by egl-15(n1457), an allele that removes a region of its C-terminal domain (CTD) known to bind SEM-5. To determine how mutations altered EGL-15 activity in the SMs and Hyp7, we used the kinase reporter ERK-KTR to measure activation of the ERK ortholog MPK-1. Consequences of egl-15(n1457) were cell-specific, resulting in loss of MPK-1 activity in the SMs and elevated activity in Hyp7. Previous studies of Hyp7 showed that loss of the CLR-1 phosphatase causes a fluid homeostasis defect termed “Clear” that is suppressed by reduction of EGL-15 signaling, a phenotype termed “Suppressor of Clear” (Soc). To identify mechanisms that permit EGL-15 signaling in Hyp7, we conducted a genetic screen for Soc mutants in the clr-1; egl-15(n1457) genotype. We report the identification of SOC-3, a protein with putative SEM-5-binding motifs and PH and PTB domains similar to DOK and IRS proteins. In combination with the egl-15(n1457) mutation, loss of either soc-3, the GAB1 ortholog soc-1, or the SHP2 ortholog ptp-2, reduced MPK-1 activation. We generated alleles of soc-3 to test the requirement for the SEM-5-binding motifs, finding that residue Tyr356 is required for function. We propose that EGL-15-mediated SM chemoattraction relies solely on the direct interaction between SEM-5 and the EGL-15 CTD. In Hyp7, EGL-15 signaling uses two mechanisms: the direct SEM-5 binding mechanism; and an alternative, CTD-independent mechanism involving SOC-3, SOC-1, and PTP-2. This work demonstrates that FGF signaling uses distinct, tissue-specific mechanisms in development, and identifies SOC-3 as a potential adaptor that facilitates Ras pathway activation by FGFR.
期刊介绍:
Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.