{"title":"时间背景调节跨模态时间分辨:超模态时间表征的电生理学证据","authors":"Shufang Pang , Shaofan Ding , Chunhua Peng , Youguo Chen","doi":"10.1016/j.cortex.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><p>Although the peripheral nervous system lacks a dedicated receptor, the brain processes temporal information through different sensory channels. A critical question is whether temporal information from different sensory modalities at different times forms modality-specific representations or is integrated into a common representation in a supramodal manner. Behavioral studies on temporal memory mixing and the central tendency effect have provided evidence for supramodal temporal representations. We aimed to provide electrophysiological evidence for this proposal by employing a cross-modality time discrimination task combined with electroencephalogram (EEG) recordings. The task maintained a fixed auditory standard duration, whereas the visual comparison duration was randomly selected from the short and long ranges, creating two different audio–visual temporal contexts. The behavioral results showed that the point of subjective equality (PSE) in the short context was significantly lower than that in the long context. The EEG results revealed that the amplitude of the contingent negative variation (CNV) in the short context was significantly higher (more negative) than in the long context in the early stage, while it was lower (more positive) in the later stage. These results suggest that the audiovisual temporal context is integrated with the auditory standard duration to generate a subjective time criterion. Compared with the long context, the subjective time criterion in the short context was shorter, resulting in earlier decision-making and a preceding decrease in CNV. Our study provides electrophysiological evidence that temporal information from different modalities inputted into the brain at different times can form a supramodal temporal representation.</p></div>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"179 ","pages":"Pages 143-156"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal context modulates cross-modality time discrimination: Electrophysiological evidence for supramodal temporal representation\",\"authors\":\"Shufang Pang , Shaofan Ding , Chunhua Peng , Youguo Chen\",\"doi\":\"10.1016/j.cortex.2024.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although the peripheral nervous system lacks a dedicated receptor, the brain processes temporal information through different sensory channels. A critical question is whether temporal information from different sensory modalities at different times forms modality-specific representations or is integrated into a common representation in a supramodal manner. Behavioral studies on temporal memory mixing and the central tendency effect have provided evidence for supramodal temporal representations. We aimed to provide electrophysiological evidence for this proposal by employing a cross-modality time discrimination task combined with electroencephalogram (EEG) recordings. The task maintained a fixed auditory standard duration, whereas the visual comparison duration was randomly selected from the short and long ranges, creating two different audio–visual temporal contexts. The behavioral results showed that the point of subjective equality (PSE) in the short context was significantly lower than that in the long context. The EEG results revealed that the amplitude of the contingent negative variation (CNV) in the short context was significantly higher (more negative) than in the long context in the early stage, while it was lower (more positive) in the later stage. These results suggest that the audiovisual temporal context is integrated with the auditory standard duration to generate a subjective time criterion. Compared with the long context, the subjective time criterion in the short context was shorter, resulting in earlier decision-making and a preceding decrease in CNV. Our study provides electrophysiological evidence that temporal information from different modalities inputted into the brain at different times can form a supramodal temporal representation.</p></div>\",\"PeriodicalId\":10758,\"journal\":{\"name\":\"Cortex\",\"volume\":\"179 \",\"pages\":\"Pages 143-156\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cortex\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010945224002144\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cortex","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010945224002144","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Temporal context modulates cross-modality time discrimination: Electrophysiological evidence for supramodal temporal representation
Although the peripheral nervous system lacks a dedicated receptor, the brain processes temporal information through different sensory channels. A critical question is whether temporal information from different sensory modalities at different times forms modality-specific representations or is integrated into a common representation in a supramodal manner. Behavioral studies on temporal memory mixing and the central tendency effect have provided evidence for supramodal temporal representations. We aimed to provide electrophysiological evidence for this proposal by employing a cross-modality time discrimination task combined with electroencephalogram (EEG) recordings. The task maintained a fixed auditory standard duration, whereas the visual comparison duration was randomly selected from the short and long ranges, creating two different audio–visual temporal contexts. The behavioral results showed that the point of subjective equality (PSE) in the short context was significantly lower than that in the long context. The EEG results revealed that the amplitude of the contingent negative variation (CNV) in the short context was significantly higher (more negative) than in the long context in the early stage, while it was lower (more positive) in the later stage. These results suggest that the audiovisual temporal context is integrated with the auditory standard duration to generate a subjective time criterion. Compared with the long context, the subjective time criterion in the short context was shorter, resulting in earlier decision-making and a preceding decrease in CNV. Our study provides electrophysiological evidence that temporal information from different modalities inputted into the brain at different times can form a supramodal temporal representation.
期刊介绍:
CORTEX is an international journal devoted to the study of cognition and of the relationship between the nervous system and mental processes, particularly as these are reflected in the behaviour of patients with acquired brain lesions, normal volunteers, children with typical and atypical development, and in the activation of brain regions and systems as recorded by functional neuroimaging techniques. It was founded in 1964 by Ennio De Renzi.