Guangqi Li, Qinhui Li, Yongqing Tong, Jin Zeng, Tiantian Dang, Ningai Yang, Yuning Zhou, Lei Ma, Qirui Ge, Zhijun Zhao
{"title":"弓形虫跳动蛋白16对肺腺癌细胞的抗癌机制","authors":"Guangqi Li, Qinhui Li, Yongqing Tong, Jin Zeng, Tiantian Dang, Ningai Yang, Yuning Zhou, Lei Ma, Qirui Ge, Zhijun Zhao","doi":"10.1080/15384047.2024.2392902","DOIUrl":null,"url":null,"abstract":"<p><p>Lung adenocarcinoma is the most prevalent subtype of lung cancer, which is the leading cause of cancer-related mortality worldwide. <i>Toxoplasma gondii</i> (<i>T.gondii</i>) Rhoptry protein 16 (ROP16) has been shown to quickly enter the nucleus, and through activate host cell signaling pathways by phosphorylation STAT3 and may affect the survival of tumor cells. This study constructed recombinant lentiviral expression vector of <i>T. gondii</i> ROP16 I/II/III and stably transfected them into A549 cells, and the effects of ROP16 on cell proliferation, cell cycle, apoptosis, invasion, and migration of A549 cells were explored by utilizing CCK-8, flow cytometry, qPCR, Western blotting, TUNEL, Transwell assay, and cell scratch assay, and these effects were confirmed in the primary human lung adenocarcinoma cells from postoperative cancer tissues of patients. The type I and III ROP16 activate STAT3 and inhibited A549 cell proliferation, regulated the expression of p21, CDK6, CyclinD1, and induced cell cycle arrest at the G1 phase. ROP16 also regulated the Bax, Bcl-2, p53, cleaved-Caspase3, and Caspase9, inducing cell apoptosis, and reduced the invasion and migration of A549 cells, while type II ROP16 protein had no such effect. Furthermore, in the regulation of ROP16 on primary lung adenocarcinoma cells, type I and III ROP16 showed the same anticancer potential. These findings confirmed the anti-lung adenocarcinoma effect of type I and III ROP16, offering fresh perspectives on the possible application of ROP16 as a target with adjuvant therapy for lung adenocarcinoma and propelling the field of precision therapy research toward parasite treatment of tumors.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346528/pdf/","citationCount":"0","resultStr":"{\"title\":\"The anticancer mechanisms of <i>Toxoplasma gondii</i> rhoptry protein 16 on lung adenocarcinoma cells.\",\"authors\":\"Guangqi Li, Qinhui Li, Yongqing Tong, Jin Zeng, Tiantian Dang, Ningai Yang, Yuning Zhou, Lei Ma, Qirui Ge, Zhijun Zhao\",\"doi\":\"10.1080/15384047.2024.2392902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung adenocarcinoma is the most prevalent subtype of lung cancer, which is the leading cause of cancer-related mortality worldwide. <i>Toxoplasma gondii</i> (<i>T.gondii</i>) Rhoptry protein 16 (ROP16) has been shown to quickly enter the nucleus, and through activate host cell signaling pathways by phosphorylation STAT3 and may affect the survival of tumor cells. This study constructed recombinant lentiviral expression vector of <i>T. gondii</i> ROP16 I/II/III and stably transfected them into A549 cells, and the effects of ROP16 on cell proliferation, cell cycle, apoptosis, invasion, and migration of A549 cells were explored by utilizing CCK-8, flow cytometry, qPCR, Western blotting, TUNEL, Transwell assay, and cell scratch assay, and these effects were confirmed in the primary human lung adenocarcinoma cells from postoperative cancer tissues of patients. The type I and III ROP16 activate STAT3 and inhibited A549 cell proliferation, regulated the expression of p21, CDK6, CyclinD1, and induced cell cycle arrest at the G1 phase. ROP16 also regulated the Bax, Bcl-2, p53, cleaved-Caspase3, and Caspase9, inducing cell apoptosis, and reduced the invasion and migration of A549 cells, while type II ROP16 protein had no such effect. Furthermore, in the regulation of ROP16 on primary lung adenocarcinoma cells, type I and III ROP16 showed the same anticancer potential. These findings confirmed the anti-lung adenocarcinoma effect of type I and III ROP16, offering fresh perspectives on the possible application of ROP16 as a target with adjuvant therapy for lung adenocarcinoma and propelling the field of precision therapy research toward parasite treatment of tumors.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346528/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2024.2392902\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2392902","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The anticancer mechanisms of Toxoplasma gondii rhoptry protein 16 on lung adenocarcinoma cells.
Lung adenocarcinoma is the most prevalent subtype of lung cancer, which is the leading cause of cancer-related mortality worldwide. Toxoplasma gondii (T.gondii) Rhoptry protein 16 (ROP16) has been shown to quickly enter the nucleus, and through activate host cell signaling pathways by phosphorylation STAT3 and may affect the survival of tumor cells. This study constructed recombinant lentiviral expression vector of T. gondii ROP16 I/II/III and stably transfected them into A549 cells, and the effects of ROP16 on cell proliferation, cell cycle, apoptosis, invasion, and migration of A549 cells were explored by utilizing CCK-8, flow cytometry, qPCR, Western blotting, TUNEL, Transwell assay, and cell scratch assay, and these effects were confirmed in the primary human lung adenocarcinoma cells from postoperative cancer tissues of patients. The type I and III ROP16 activate STAT3 and inhibited A549 cell proliferation, regulated the expression of p21, CDK6, CyclinD1, and induced cell cycle arrest at the G1 phase. ROP16 also regulated the Bax, Bcl-2, p53, cleaved-Caspase3, and Caspase9, inducing cell apoptosis, and reduced the invasion and migration of A549 cells, while type II ROP16 protein had no such effect. Furthermore, in the regulation of ROP16 on primary lung adenocarcinoma cells, type I and III ROP16 showed the same anticancer potential. These findings confirmed the anti-lung adenocarcinoma effect of type I and III ROP16, offering fresh perspectives on the possible application of ROP16 as a target with adjuvant therapy for lung adenocarcinoma and propelling the field of precision therapy research toward parasite treatment of tumors.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.