Chenyu Zhang, Weixin Qiu, Wenzhang Li, Ting Zhou, Gaoshuang He, Canjun Liu, Wenhao He, Lei Gan, Jianye Liu, Jie Li, Qing Wu, Yang Liu
{"title":"在 SnWO4 薄膜上集成碳层和 CoNiP 助催化剂以提高光电化学水分离效果。","authors":"Chenyu Zhang, Weixin Qiu, Wenzhang Li, Ting Zhou, Gaoshuang He, Canjun Liu, Wenhao He, Lei Gan, Jianye Liu, Jie Li, Qing Wu, Yang Liu","doi":"10.1002/cssc.202401337","DOIUrl":null,"url":null,"abstract":"<p>α-SnWO<sub>4</sub> is a promising semiconductor for solar water splitting, however, its performance is limited by weak water oxidation and poor charge transfer. In this study, we employ a vapor deposition method to uniformly implement a carbon layer onto the surface of SnWO<sub>4</sub> coupled with a CoNiP cocatalyst, successfully constructing the integrated CoNiP/C/SnWO<sub>4</sub> film photoanode and alleviating the oxidation of Sn<sup>2+</sup> when loading electrocatalyst. Incorporating the carbon layer enhances the interface charge conduction behavior between the SnWO<sub>4</sub> substrate and the CoNiP cocatalyst, thereby mitigating charge recombination. The synergistic interplay between the carbon layer and CoNiP leads to a remarkable achievement, as evidenced by the photocurrent of 1.72 mA cm<sup>−2</sup> (1.23 V vs. RHE) observed for SnWO<sub>4</sub> film measured in 0.2 M potassium phosphate buffer solution. In this work, we demonstrate the viability of tailoring SnWO<sub>4</sub> photoanode and provide valuable insights for prospective advancements in modifying SnWO<sub>4</sub> photoanode.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 2","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Carbon Layer and CoNiP Cocatalyst on SnWO4 Film for Enhanced Photoelectrochemical Water Splitting\",\"authors\":\"Chenyu Zhang, Weixin Qiu, Wenzhang Li, Ting Zhou, Gaoshuang He, Canjun Liu, Wenhao He, Lei Gan, Jianye Liu, Jie Li, Qing Wu, Yang Liu\",\"doi\":\"10.1002/cssc.202401337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>α-SnWO<sub>4</sub> is a promising semiconductor for solar water splitting, however, its performance is limited by weak water oxidation and poor charge transfer. In this study, we employ a vapor deposition method to uniformly implement a carbon layer onto the surface of SnWO<sub>4</sub> coupled with a CoNiP cocatalyst, successfully constructing the integrated CoNiP/C/SnWO<sub>4</sub> film photoanode and alleviating the oxidation of Sn<sup>2+</sup> when loading electrocatalyst. Incorporating the carbon layer enhances the interface charge conduction behavior between the SnWO<sub>4</sub> substrate and the CoNiP cocatalyst, thereby mitigating charge recombination. The synergistic interplay between the carbon layer and CoNiP leads to a remarkable achievement, as evidenced by the photocurrent of 1.72 mA cm<sup>−2</sup> (1.23 V vs. RHE) observed for SnWO<sub>4</sub> film measured in 0.2 M potassium phosphate buffer solution. In this work, we demonstrate the viability of tailoring SnWO<sub>4</sub> photoanode and provide valuable insights for prospective advancements in modifying SnWO<sub>4</sub> photoanode.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202401337\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202401337","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
α-SnWO4是一种很有前途的太阳能水分离半导体,但其性能受到水氧化作用弱和电荷转移差的限制。在本研究中,我们采用气相沉积法在 SnWO4 与 CoNiP 助催化剂结合的表面均匀地加入了碳层,成功地构建了 CoNiP/C/SnWO4 薄膜集成光阳极,并减轻了加载电催化剂时 Sn2+ 的氧化作用。碳层的加入增强了 SnWO4 衬底与 CoNiP 助催化剂之间的界面电荷传导行为,从而减轻了电荷重组。碳层和 CoNiP 之间的协同作用取得了显著的成果,在 0.2 M 磷酸二氢钾缓冲溶液中测量到的 SnWO4 薄膜光电流为 1.72 mA cm-2(1.23 V vs. RHE)就是证明。在这项工作中,我们证明了定制 SnWO4 光阳极的可行性,并为改性 SnWO4 光阳极的前瞻性进展提供了宝贵的见解。
Integrated Carbon Layer and CoNiP Cocatalyst on SnWO4 Film for Enhanced Photoelectrochemical Water Splitting
α-SnWO4 is a promising semiconductor for solar water splitting, however, its performance is limited by weak water oxidation and poor charge transfer. In this study, we employ a vapor deposition method to uniformly implement a carbon layer onto the surface of SnWO4 coupled with a CoNiP cocatalyst, successfully constructing the integrated CoNiP/C/SnWO4 film photoanode and alleviating the oxidation of Sn2+ when loading electrocatalyst. Incorporating the carbon layer enhances the interface charge conduction behavior between the SnWO4 substrate and the CoNiP cocatalyst, thereby mitigating charge recombination. The synergistic interplay between the carbon layer and CoNiP leads to a remarkable achievement, as evidenced by the photocurrent of 1.72 mA cm−2 (1.23 V vs. RHE) observed for SnWO4 film measured in 0.2 M potassium phosphate buffer solution. In this work, we demonstrate the viability of tailoring SnWO4 photoanode and provide valuable insights for prospective advancements in modifying SnWO4 photoanode.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology