Jueun Kim, Simin Sun, Donghyeon Kim, Byung Gwan Park, Hojeong Lee, Wenyu Huang, Kwangjin An
{"title":"催化活性位点的大小和结构在聚烯烃氢解中的作用","authors":"Jueun Kim, Simin Sun, Donghyeon Kim, Byung Gwan Park, Hojeong Lee, Wenyu Huang, Kwangjin An","doi":"10.1016/j.checat.2024.101076","DOIUrl":null,"url":null,"abstract":"<p>The increasing amount of plastic waste poses serious environmental problems that threaten both ecosystems and human well-being. Hydrogenolysis has been widely studied as an effective approach for converting polyolefins into high-value liquids and waxy fuels. Their multifaceted reaction mechanism, including dehydrogenation, C–C bond cleavage, and hydrogenation, highlights the need for sophisticated catalyst design. The suppression of methane production, a persistent challenge in polyolefin hydrogenolysis, requires precise control of the cleavage site and inhibition of successive C–C bond cleavage. This delicate balance is achieved by carefully tuning the size and structure of metals. In this review, we investigate the effects of the size and structure of active sites on their catalytic activity and selectivity for the hydrogenolysis of polyolefins, including polyethylene and polypropylene. A fundamental understanding of hydrogenolysis mechanisms, combined with strategic synthetic methodologies, is crucial for creating efficient catalysts with tailored properties.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"2 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of size and structure of catalytic active sites in polyolefin hydrogenolysis\",\"authors\":\"Jueun Kim, Simin Sun, Donghyeon Kim, Byung Gwan Park, Hojeong Lee, Wenyu Huang, Kwangjin An\",\"doi\":\"10.1016/j.checat.2024.101076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing amount of plastic waste poses serious environmental problems that threaten both ecosystems and human well-being. Hydrogenolysis has been widely studied as an effective approach for converting polyolefins into high-value liquids and waxy fuels. Their multifaceted reaction mechanism, including dehydrogenation, C–C bond cleavage, and hydrogenation, highlights the need for sophisticated catalyst design. The suppression of methane production, a persistent challenge in polyolefin hydrogenolysis, requires precise control of the cleavage site and inhibition of successive C–C bond cleavage. This delicate balance is achieved by carefully tuning the size and structure of metals. In this review, we investigate the effects of the size and structure of active sites on their catalytic activity and selectivity for the hydrogenolysis of polyolefins, including polyethylene and polypropylene. A fundamental understanding of hydrogenolysis mechanisms, combined with strategic synthetic methodologies, is crucial for creating efficient catalysts with tailored properties.</p>\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2024.101076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The role of size and structure of catalytic active sites in polyolefin hydrogenolysis
The increasing amount of plastic waste poses serious environmental problems that threaten both ecosystems and human well-being. Hydrogenolysis has been widely studied as an effective approach for converting polyolefins into high-value liquids and waxy fuels. Their multifaceted reaction mechanism, including dehydrogenation, C–C bond cleavage, and hydrogenation, highlights the need for sophisticated catalyst design. The suppression of methane production, a persistent challenge in polyolefin hydrogenolysis, requires precise control of the cleavage site and inhibition of successive C–C bond cleavage. This delicate balance is achieved by carefully tuning the size and structure of metals. In this review, we investigate the effects of the size and structure of active sites on their catalytic activity and selectivity for the hydrogenolysis of polyolefins, including polyethylene and polypropylene. A fundamental understanding of hydrogenolysis mechanisms, combined with strategic synthetic methodologies, is crucial for creating efficient catalysts with tailored properties.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.