Zhishan Chen, Shaoan Zhang, Zhenzhang Li, Huacong Ye, Haoran Yan, Jialong Xu, Ling Gao, Yang Li and Shizhen Zhang
{"title":"具有高近红外输出功率的 Cr3+ 掺杂荧光粉的热稳定近红外宽发射率","authors":"Zhishan Chen, Shaoan Zhang, Zhenzhang Li, Huacong Ye, Haoran Yan, Jialong Xu, Ling Gao, Yang Li and Shizhen Zhang","doi":"10.1039/D4QI01728E","DOIUrl":null,"url":null,"abstract":"<p >The development of high-performance near-infrared (NIR) luminescent materials remains a significant challenge, particularly in enhancing thermal stability. Herein, we observed an anti-thermal quenching effect in the YGa<small><sub>1.5</sub></small>Al<small><sub>1.5</sub></small>(BO<small><sub>3</sub></small>)<small><sub>4</sub></small>:Cr<small><sup>3+</sup></small> phosphor, with its emission intensity reaching 104% at 423 K and 101% at 483 K compared to room temperature. This anti-thermal quenching is mainly attributed to thermal-induced emission compensation resulting from excited electrons trapped at crystal defects, as confirmed by density functional theory computation. Additionally, YGa<small><sub>1.5</sub></small>Al<small><sub>1.5</sub></small>(BO<small><sub>3</sub></small>)<small><sub>4</sub></small>:Cr<small><sup>3+</sup></small> exhibits a broad NIR emission peaking at 760 nm with a full width at half maximum of 135 nm and a high photoluminescence quantum yield (86%). As a proof-of-concept, we fabricated an NIR phosphor-converted light-emitting diode device that achieves an NIR output power of 59.67 mW with an input working current of 150 mA, demonstrating a photoelectric conversion efficiency of 13.6%. The utilization of this high-power NIR light-emitting diode device as a lighting source enables a penetration depth of up to 15 mm, demonstrating the potential applications of Cr<small><sup>3+</sup></small>-doped YGa<small><sub>1.5</sub></small>Al<small><sub>1.5</sub></small>(BO<small><sub>3</sub></small>)<small><sub>4</sub></small>:Cr<small><sup>3+</sup></small> phosphors for non-invasive detection of biological tissue.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermally stable NIR broad emission of Cr3+ doping phosphor with a high output power†\",\"authors\":\"Zhishan Chen, Shaoan Zhang, Zhenzhang Li, Huacong Ye, Haoran Yan, Jialong Xu, Ling Gao, Yang Li and Shizhen Zhang\",\"doi\":\"10.1039/D4QI01728E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of high-performance near-infrared (NIR) luminescent materials remains a significant challenge, particularly in enhancing thermal stability. Herein, we observed an anti-thermal quenching effect in the YGa<small><sub>1.5</sub></small>Al<small><sub>1.5</sub></small>(BO<small><sub>3</sub></small>)<small><sub>4</sub></small>:Cr<small><sup>3+</sup></small> phosphor, with its emission intensity reaching 104% at 423 K and 101% at 483 K compared to room temperature. This anti-thermal quenching is mainly attributed to thermal-induced emission compensation resulting from excited electrons trapped at crystal defects, as confirmed by density functional theory computation. Additionally, YGa<small><sub>1.5</sub></small>Al<small><sub>1.5</sub></small>(BO<small><sub>3</sub></small>)<small><sub>4</sub></small>:Cr<small><sup>3+</sup></small> exhibits a broad NIR emission peaking at 760 nm with a full width at half maximum of 135 nm and a high photoluminescence quantum yield (86%). As a proof-of-concept, we fabricated an NIR phosphor-converted light-emitting diode device that achieves an NIR output power of 59.67 mW with an input working current of 150 mA, demonstrating a photoelectric conversion efficiency of 13.6%. The utilization of this high-power NIR light-emitting diode device as a lighting source enables a penetration depth of up to 15 mm, demonstrating the potential applications of Cr<small><sup>3+</sup></small>-doped YGa<small><sub>1.5</sub></small>Al<small><sub>1.5</sub></small>(BO<small><sub>3</sub></small>)<small><sub>4</sub></small>:Cr<small><sup>3+</sup></small> phosphors for non-invasive detection of biological tissue.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01728e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi01728e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
开发高性能近红外(NIR)发光材料仍然是一项重大挑战,尤其是在提高热稳定性方面。在这里,我们观察到了 YGa1.5Al1.5(BO3)4:Cr3+ 荧光粉中的抗热淬效应,与室温相比,它在 423 K 和 483 K 时的发射强度分别达到 104% 和 101%。密度泛函理论计算证实,这种抗热淬火主要归因于热诱导的发射补偿,其原因是晶体缺陷处捕获了激发电子。此外,YGa1.5Al1.5(BO3)4:Cr3+ 在 750 纳米波长处显示出宽广的近红外发射峰值,半最大值全宽为 135 纳米波长,并具有很高的光致发光量子产率(86%)。作为概念验证,我们制作了一个近红外荧光粉转换发光二极管器件,在输入 150 mA 工作电流的情况下,其近红外输出功率达到 59.67 mW,光电转换效率为 13.6%。利用这种高功率近红外发光二极管器件作为照明光源,其穿透深度可达 15 毫米,这证明了掺杂 Cr3+ 的 YGa1.5Al1.5(BO3)4:Cr3+ 荧光粉在生物组织无创检测方面的潜在应用。
Thermally stable NIR broad emission of Cr3+ doping phosphor with a high output power†
The development of high-performance near-infrared (NIR) luminescent materials remains a significant challenge, particularly in enhancing thermal stability. Herein, we observed an anti-thermal quenching effect in the YGa1.5Al1.5(BO3)4:Cr3+ phosphor, with its emission intensity reaching 104% at 423 K and 101% at 483 K compared to room temperature. This anti-thermal quenching is mainly attributed to thermal-induced emission compensation resulting from excited electrons trapped at crystal defects, as confirmed by density functional theory computation. Additionally, YGa1.5Al1.5(BO3)4:Cr3+ exhibits a broad NIR emission peaking at 760 nm with a full width at half maximum of 135 nm and a high photoluminescence quantum yield (86%). As a proof-of-concept, we fabricated an NIR phosphor-converted light-emitting diode device that achieves an NIR output power of 59.67 mW with an input working current of 150 mA, demonstrating a photoelectric conversion efficiency of 13.6%. The utilization of this high-power NIR light-emitting diode device as a lighting source enables a penetration depth of up to 15 mm, demonstrating the potential applications of Cr3+-doped YGa1.5Al1.5(BO3)4:Cr3+ phosphors for non-invasive detection of biological tissue.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.