{"title":"利用同调延续求解离散引力中的面积-长度系统","authors":"Seth K Asante and Taylor Brysiewicz","doi":"10.1088/1361-6382/ad6dcc","DOIUrl":null,"url":null,"abstract":"Area variables are intrinsic to connection formulations of general relativity, in contrast to the fundamental length variables prevalent in metric formulations. Within 4D discrete gravity, particularly based on triangulations, the area-length system establishes a relationship between area variables associated with triangles and the edge length variables. This system is comprised of polynomial equations derived from Heron’s formula, which relates the area of a triangle to its edge lengths. Using tools from numerical algebraic geometry, we study the area-length systems. In particular, we show that given the ten triangular areas of a single 4-simplex, there could be up to 64 compatible sets of edge lengths. Moreover, we show that these 64 solutions do not, in general, admit formulae in terms of the areas by analyzing the Galois group, or monodromy group, of the problem. We show that by introducing additional symmetry constraints, it is possible to obtain such formulae for the edge lengths. We take the first steps toward applying our results within discrete quantum gravity, specifically for effective spin foam models.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the area-length systems in discrete gravity using homotopy continuation\",\"authors\":\"Seth K Asante and Taylor Brysiewicz\",\"doi\":\"10.1088/1361-6382/ad6dcc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Area variables are intrinsic to connection formulations of general relativity, in contrast to the fundamental length variables prevalent in metric formulations. Within 4D discrete gravity, particularly based on triangulations, the area-length system establishes a relationship between area variables associated with triangles and the edge length variables. This system is comprised of polynomial equations derived from Heron’s formula, which relates the area of a triangle to its edge lengths. Using tools from numerical algebraic geometry, we study the area-length systems. In particular, we show that given the ten triangular areas of a single 4-simplex, there could be up to 64 compatible sets of edge lengths. Moreover, we show that these 64 solutions do not, in general, admit formulae in terms of the areas by analyzing the Galois group, or monodromy group, of the problem. We show that by introducing additional symmetry constraints, it is possible to obtain such formulae for the edge lengths. We take the first steps toward applying our results within discrete quantum gravity, specifically for effective spin foam models.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ad6dcc\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad6dcc","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Solving the area-length systems in discrete gravity using homotopy continuation
Area variables are intrinsic to connection formulations of general relativity, in contrast to the fundamental length variables prevalent in metric formulations. Within 4D discrete gravity, particularly based on triangulations, the area-length system establishes a relationship between area variables associated with triangles and the edge length variables. This system is comprised of polynomial equations derived from Heron’s formula, which relates the area of a triangle to its edge lengths. Using tools from numerical algebraic geometry, we study the area-length systems. In particular, we show that given the ten triangular areas of a single 4-simplex, there could be up to 64 compatible sets of edge lengths. Moreover, we show that these 64 solutions do not, in general, admit formulae in terms of the areas by analyzing the Galois group, or monodromy group, of the problem. We show that by introducing additional symmetry constraints, it is possible to obtain such formulae for the edge lengths. We take the first steps toward applying our results within discrete quantum gravity, specifically for effective spin foam models.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.