{"title":"3+1)维梅尔尼科夫方程的高阶呼吸解和交互解","authors":"","doi":"10.1016/j.wavemoti.2024.103395","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we construct the high-order breather and interaction solutions of the <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional Mel’nikov equation using the KP hierarchy reduction approach and express them in a concise determinant form. Our solutions show that the two breathers, two periodic waves, and the hybrid mode of the breather and periodic wave are all mutually parallel. Furthermore, by examining the long wave limit of the periodic wave solutions, a variety of rational solutions (lumps) and mixed solutions are obtained. Notably, the interaction between the lump and breather is found to be elastic. These novel results provide deeper insights into the interactions among different solution types.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-order breather and interaction solutions to the (3+1)-dimensional Mel’nikov equation\",\"authors\":\"\",\"doi\":\"10.1016/j.wavemoti.2024.103395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we construct the high-order breather and interaction solutions of the <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional Mel’nikov equation using the KP hierarchy reduction approach and express them in a concise determinant form. Our solutions show that the two breathers, two periodic waves, and the hybrid mode of the breather and periodic wave are all mutually parallel. Furthermore, by examining the long wave limit of the periodic wave solutions, a variety of rational solutions (lumps) and mixed solutions are obtained. Notably, the interaction between the lump and breather is found to be elastic. These novel results provide deeper insights into the interactions among different solution types.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001252\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001252","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Higher-order breather and interaction solutions to the (3+1)-dimensional Mel’nikov equation
In this paper, we construct the high-order breather and interaction solutions of the -dimensional Mel’nikov equation using the KP hierarchy reduction approach and express them in a concise determinant form. Our solutions show that the two breathers, two periodic waves, and the hybrid mode of the breather and periodic wave are all mutually parallel. Furthermore, by examining the long wave limit of the periodic wave solutions, a variety of rational solutions (lumps) and mixed solutions are obtained. Notably, the interaction between the lump and breather is found to be elastic. These novel results provide deeper insights into the interactions among different solution types.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.