扭曲新谷 zeta 函数的次凸性

Pub Date : 2024-08-20 DOI:10.1016/j.jnt.2024.07.008
Robert D. Hough , Eun Hye Lee
{"title":"扭曲新谷 zeta 函数的次凸性","authors":"Robert D. Hough ,&nbsp;Eun Hye Lee","doi":"10.1016/j.jnt.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Previously the authors proved subconvexity of Shintani's zeta function enumerating class numbers of binary cubic forms. Here we return to prove subconvexity of the Maass form twisted version. The method demonstrated here has applications to the subconvexity of some of the twisted zeta functions introduced by F. Sato. The argument demonstrates that the symmetric space condition used by Sato is not necessary to estimate the zeta function in the critical strip.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001781/pdfft?md5=416d6328f418d63f0962779de94e173a&pid=1-s2.0-S0022314X24001781-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Subconvexity of twisted Shintani zeta functions\",\"authors\":\"Robert D. Hough ,&nbsp;Eun Hye Lee\",\"doi\":\"10.1016/j.jnt.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Previously the authors proved subconvexity of Shintani's zeta function enumerating class numbers of binary cubic forms. Here we return to prove subconvexity of the Maass form twisted version. The method demonstrated here has applications to the subconvexity of some of the twisted zeta functions introduced by F. Sato. The argument demonstrates that the symmetric space condition used by Sato is not necessary to estimate the zeta function in the critical strip.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001781/pdfft?md5=416d6328f418d63f0962779de94e173a&pid=1-s2.0-S0022314X24001781-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在此之前,作者证明了枚举二元三次方形式类数的新谷 zeta 函数的次凸性。在此,我们再次证明马斯形式扭曲版本的次凸性。这里演示的方法可应用于佐藤 F. 提出的一些扭曲zeta函数的次凸性。这一论证表明,佐藤所使用的对称空间条件对于估计临界带中的zeta函数并非必要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Subconvexity of twisted Shintani zeta functions

Previously the authors proved subconvexity of Shintani's zeta function enumerating class numbers of binary cubic forms. Here we return to prove subconvexity of the Maass form twisted version. The method demonstrated here has applications to the subconvexity of some of the twisted zeta functions introduced by F. Sato. The argument demonstrates that the symmetric space condition used by Sato is not necessary to estimate the zeta function in the critical strip.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信