{"title":"扭曲新谷 zeta 函数的次凸性","authors":"Robert D. Hough , Eun Hye Lee","doi":"10.1016/j.jnt.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Previously the authors proved subconvexity of Shintani's zeta function enumerating class numbers of binary cubic forms. Here we return to prove subconvexity of the Maass form twisted version. The method demonstrated here has applications to the subconvexity of some of the twisted zeta functions introduced by F. Sato. The argument demonstrates that the symmetric space condition used by Sato is not necessary to estimate the zeta function in the critical strip.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"266 ","pages":"Pages 62-97"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001781/pdfft?md5=416d6328f418d63f0962779de94e173a&pid=1-s2.0-S0022314X24001781-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Subconvexity of twisted Shintani zeta functions\",\"authors\":\"Robert D. Hough , Eun Hye Lee\",\"doi\":\"10.1016/j.jnt.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Previously the authors proved subconvexity of Shintani's zeta function enumerating class numbers of binary cubic forms. Here we return to prove subconvexity of the Maass form twisted version. The method demonstrated here has applications to the subconvexity of some of the twisted zeta functions introduced by F. Sato. The argument demonstrates that the symmetric space condition used by Sato is not necessary to estimate the zeta function in the critical strip.</p></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"266 \",\"pages\":\"Pages 62-97\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001781/pdfft?md5=416d6328f418d63f0962779de94e173a&pid=1-s2.0-S0022314X24001781-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001781\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001781","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在此之前,作者证明了枚举二元三次方形式类数的新谷 zeta 函数的次凸性。在此,我们再次证明马斯形式扭曲版本的次凸性。这里演示的方法可应用于佐藤 F. 提出的一些扭曲zeta函数的次凸性。这一论证表明,佐藤所使用的对称空间条件对于估计临界带中的zeta函数并非必要。
Previously the authors proved subconvexity of Shintani's zeta function enumerating class numbers of binary cubic forms. Here we return to prove subconvexity of the Maass form twisted version. The method demonstrated here has applications to the subconvexity of some of the twisted zeta functions introduced by F. Sato. The argument demonstrates that the symmetric space condition used by Sato is not necessary to estimate the zeta function in the critical strip.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.