{"title":"插电式混合动力汽车在制动过程中的降档策略,以获得更大的再生能量","authors":"","doi":"10.1016/j.conengprac.2024.106049","DOIUrl":null,"url":null,"abstract":"<div><p>The P2 configuration plug-in hybrid electric vehicle (P2-PHEV) equipped with a multi-speed transmission has a high potential for recovering more regenerative energy, as the shifting strategy can be employed to adjust the working zone of the electric motor (EM). However, the existing shifting strategy designed for normal driving conditions cannot achieve optimal regenerative energy recovery. In this study, a shifting strategy used in the regenerative braking process is proposed. First, to make the EM provide more regenerative force during braking, a braking force distribution algorithm is devised while simultaneously considering braking stability and safety. Second, to realize maximum regenerative braking energy recovery, an optimal shifting strategy is designed for regenerative braking. Third, the classical braking process is analyzed and six thresholds are abstracted and optimized to establish a rule for restraining frequent gearshifts raised in the proposed optimal shifting strategy. Finally, the proposed strategy is verified under three standard cycles, results show that the proposed shifting strategy can recover considerable regenerative energy without frequent gearshifts.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downshifting strategy of plug-in hybrid vehicle during braking process for greater regenerative energy\",\"authors\":\"\",\"doi\":\"10.1016/j.conengprac.2024.106049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The P2 configuration plug-in hybrid electric vehicle (P2-PHEV) equipped with a multi-speed transmission has a high potential for recovering more regenerative energy, as the shifting strategy can be employed to adjust the working zone of the electric motor (EM). However, the existing shifting strategy designed for normal driving conditions cannot achieve optimal regenerative energy recovery. In this study, a shifting strategy used in the regenerative braking process is proposed. First, to make the EM provide more regenerative force during braking, a braking force distribution algorithm is devised while simultaneously considering braking stability and safety. Second, to realize maximum regenerative braking energy recovery, an optimal shifting strategy is designed for regenerative braking. Third, the classical braking process is analyzed and six thresholds are abstracted and optimized to establish a rule for restraining frequent gearshifts raised in the proposed optimal shifting strategy. Finally, the proposed strategy is verified under three standard cycles, results show that the proposed shifting strategy can recover considerable regenerative energy without frequent gearshifts.</p></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002089\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002089","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
配备多速变速器的 P2 配置插电式混合动力电动汽车(P2-PHEV)具有回收更多再生能量的巨大潜力,因为换挡策略可用于调整电动马达(EM)的工作区域。然而,现有的针对正常驾驶条件设计的换挡策略无法实现最佳的再生能量回收。本研究提出了一种用于再生制动过程的换挡策略。首先,为了使 EM 在制动过程中提供更多的再生力,设计了一种制动力分配算法,同时考虑了制动稳定性和安全性。其次,为实现最大的再生制动能量回收,设计了再生制动的最佳换挡策略。第三,对经典制动过程进行分析,并抽象和优化了六个阈值,从而建立了一个规则,用于抑制所提出的优化换挡策略中的频繁换挡。最后,在三个标准周期下对所提出的策略进行了验证,结果表明所提出的换挡策略可以在不频繁换挡的情况下回收大量再生能量。
Downshifting strategy of plug-in hybrid vehicle during braking process for greater regenerative energy
The P2 configuration plug-in hybrid electric vehicle (P2-PHEV) equipped with a multi-speed transmission has a high potential for recovering more regenerative energy, as the shifting strategy can be employed to adjust the working zone of the electric motor (EM). However, the existing shifting strategy designed for normal driving conditions cannot achieve optimal regenerative energy recovery. In this study, a shifting strategy used in the regenerative braking process is proposed. First, to make the EM provide more regenerative force during braking, a braking force distribution algorithm is devised while simultaneously considering braking stability and safety. Second, to realize maximum regenerative braking energy recovery, an optimal shifting strategy is designed for regenerative braking. Third, the classical braking process is analyzed and six thresholds are abstracted and optimized to establish a rule for restraining frequent gearshifts raised in the proposed optimal shifting strategy. Finally, the proposed strategy is verified under three standard cycles, results show that the proposed shifting strategy can recover considerable regenerative energy without frequent gearshifts.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.