循环经济中的可再生合成燃料:生命周期评估

IF 11.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
{"title":"循环经济中的可再生合成燃料:生命周期评估","authors":"","doi":"10.1016/j.resconrec.2024.107851","DOIUrl":null,"url":null,"abstract":"<div><p>Renewable synthesis fuels play a crucial role in enabling a circular economy. This study assesses the environmental impacts of power-to-hydrogen and biomass-to-hydrogen routes, considering four hydrogen storage options: hydrogen, ammonia, methane, and methanol with a function unit of 1 liter of a stored hydrogen-derived product. The assessment encompasses metrics such as carbon footprint, use of fossil and nuclear energy, ecosystem quality, human health impact, and water scarcity. The results reveal that the biomass-based route has a lesser impact on global warming potential (GWP), with the system involving chemical looping technology and using ammonia as the storage medium achieving a negative GWP of -7.55 kg CO<sub>2</sub>eq. The power-based route outperforms the biomass-based route except for GWP which is influenced by the penetration of renewable energy. Liquid hydrogen is found to be suitable for the fossil fuel-based route, while methane and ammonia are favorable to the power-based and biomass-based routes, respectively.</p></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Renewable synthesis fuels for a circular economy: A life cycle assessment\",\"authors\":\"\",\"doi\":\"10.1016/j.resconrec.2024.107851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Renewable synthesis fuels play a crucial role in enabling a circular economy. This study assesses the environmental impacts of power-to-hydrogen and biomass-to-hydrogen routes, considering four hydrogen storage options: hydrogen, ammonia, methane, and methanol with a function unit of 1 liter of a stored hydrogen-derived product. The assessment encompasses metrics such as carbon footprint, use of fossil and nuclear energy, ecosystem quality, human health impact, and water scarcity. The results reveal that the biomass-based route has a lesser impact on global warming potential (GWP), with the system involving chemical looping technology and using ammonia as the storage medium achieving a negative GWP of -7.55 kg CO<sub>2</sub>eq. The power-based route outperforms the biomass-based route except for GWP which is influenced by the penetration of renewable energy. Liquid hydrogen is found to be suitable for the fossil fuel-based route, while methane and ammonia are favorable to the power-based and biomass-based routes, respectively.</p></div>\",\"PeriodicalId\":21153,\"journal\":{\"name\":\"Resources Conservation and Recycling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Conservation and Recycling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921344924004440\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924004440","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

可再生合成燃料在实现循环经济方面发挥着至关重要的作用。本研究评估了电制氢和生物质制氢路线对环境的影响,考虑了四种氢储存方案:氢、氨、甲烷和甲醇,功能单位为 1 升储存的氢衍生产品。评估包括碳足迹、化石能源和核能的使用、生态系统质量、人类健康影响和水资源短缺等指标。结果表明,生物质路线对全球升温潜能值(GWP)的影响较小,涉及化学循环技术并使用氨作为储存介质的系统的全球升温潜能值为负值-7.55 千克二氧化碳当量。除全球升温潜能值受可再生能源渗透率的影响外,电力路线优于生物质路线。液氢适用于化石燃料路线,而甲烷和氨则分别适用于电力路线和生物质路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Renewable synthesis fuels for a circular economy: A life cycle assessment

Renewable synthesis fuels play a crucial role in enabling a circular economy. This study assesses the environmental impacts of power-to-hydrogen and biomass-to-hydrogen routes, considering four hydrogen storage options: hydrogen, ammonia, methane, and methanol with a function unit of 1 liter of a stored hydrogen-derived product. The assessment encompasses metrics such as carbon footprint, use of fossil and nuclear energy, ecosystem quality, human health impact, and water scarcity. The results reveal that the biomass-based route has a lesser impact on global warming potential (GWP), with the system involving chemical looping technology and using ammonia as the storage medium achieving a negative GWP of -7.55 kg CO2eq. The power-based route outperforms the biomass-based route except for GWP which is influenced by the penetration of renewable energy. Liquid hydrogen is found to be suitable for the fossil fuel-based route, while methane and ammonia are favorable to the power-based and biomass-based routes, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Resources Conservation and Recycling
Resources Conservation and Recycling 环境科学-工程:环境
CiteScore
22.90
自引率
6.10%
发文量
625
审稿时长
23 days
期刊介绍: The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns. Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信