无 3K3 图形的 Q 指数最大值

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yanting Zhang, Ligong Wang
{"title":"无 3K3 图形的 Q 指数最大值","authors":"Yanting Zhang,&nbsp;Ligong Wang","doi":"10.1016/j.dam.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>The <span><math><mi>Q</mi></math></span>-index of a graph <span><math><mi>G</mi></math></span> is the largest eigenvalue of its <span><math><mi>Q</mi></math></span>-matrix <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> are the diagonal matrix of vertex degrees and the adjacency matrix of <span><math><mi>G</mi></math></span>, respectively. Let <span><math><mrow><mn>3</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> denote the graph consisting of three vertex-disjoint triangles. A graph is called <span><math><mrow><mn>3</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>-free if it does not contain <span><math><mrow><mn>3</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> as a subgraph. In this paper, we present a sharp upper bound on the <span><math><mi>Q</mi></math></span>-index of <span><math><mrow><mn>3</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>-free graphs of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>453</mn></mrow></math></span>, and characterize the unique extremal graph which attains the bound.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"358 ","pages":"Pages 448-456"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maxima of the Q-index for 3K3-free graphs\",\"authors\":\"Yanting Zhang,&nbsp;Ligong Wang\",\"doi\":\"10.1016/j.dam.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <span><math><mi>Q</mi></math></span>-index of a graph <span><math><mi>G</mi></math></span> is the largest eigenvalue of its <span><math><mi>Q</mi></math></span>-matrix <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> are the diagonal matrix of vertex degrees and the adjacency matrix of <span><math><mi>G</mi></math></span>, respectively. Let <span><math><mrow><mn>3</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> denote the graph consisting of three vertex-disjoint triangles. A graph is called <span><math><mrow><mn>3</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>-free if it does not contain <span><math><mrow><mn>3</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> as a subgraph. In this paper, we present a sharp upper bound on the <span><math><mi>Q</mi></math></span>-index of <span><math><mrow><mn>3</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>-free graphs of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>453</mn></mrow></math></span>, and characterize the unique extremal graph which attains the bound.</p></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"358 \",\"pages\":\"Pages 448-456\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003573\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003573","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图 G 的 Q 指数是其 Q 矩阵 Q(G)=D(G)+A(G) 的最大特征值,其中 D(G) 和 A(G) 分别是顶点度对角矩阵和 G 的邻接矩阵。让 3K3 表示由三个顶点相交的三角形组成的图。如果一个图的子图中不包含 3K3,则该图被称为无 3K3。本文提出了阶数 n≥453 的无 3K3 图的 Q 指数的尖锐上限,并描述了达到该上限的唯一极值图的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maxima of the Q-index for 3K3-free graphs

The Q-index of a graph G is the largest eigenvalue of its Q-matrix Q(G)=D(G)+A(G), where D(G) and A(G) are the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let 3K3 denote the graph consisting of three vertex-disjoint triangles. A graph is called 3K3-free if it does not contain 3K3 as a subgraph. In this paper, we present a sharp upper bound on the Q-index of 3K3-free graphs of order n453, and characterize the unique extremal graph which attains the bound.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信