{"title":"(度量空间中的(几乎等距)局部回缩","authors":"Andrés Quilis , Abraham Rueda Zoca","doi":"10.1016/j.jfa.2024.110627","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the notion of (almost isometric) local retracts in metric space as a natural non-linear version of the concepts of ideals and almost isometric ideals in Banach spaces. We prove that given two metric spaces <span><math><mi>N</mi><mo>⊆</mo><mi>M</mi></math></span> there always exists an almost isometric local retract <span><math><mi>S</mi><mo>⊆</mo><mi>M</mi></math></span> with <span><math><mi>N</mi><mo>⊆</mo><mi>S</mi></math></span> and <span><math><mi>d</mi><mi>e</mi><mi>n</mi><mi>s</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>=</mo><mi>d</mi><mi>e</mi><mi>n</mi><mi>s</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. We also prove that metric spaces which are local retracts (respectively almost isometric local retracts) can be characterised in terms of a condition of extendability of Lipschitz functions (respectively almost isometries) between finite metric spaces. Various examples and counterexamples are exhibited.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002212362400315X/pdfft?md5=12d32ad67a62e301f9eba5c798a10628&pid=1-s2.0-S002212362400315X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"(Almost isometric) local retracts in metric spaces\",\"authors\":\"Andrés Quilis , Abraham Rueda Zoca\",\"doi\":\"10.1016/j.jfa.2024.110627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the notion of (almost isometric) local retracts in metric space as a natural non-linear version of the concepts of ideals and almost isometric ideals in Banach spaces. We prove that given two metric spaces <span><math><mi>N</mi><mo>⊆</mo><mi>M</mi></math></span> there always exists an almost isometric local retract <span><math><mi>S</mi><mo>⊆</mo><mi>M</mi></math></span> with <span><math><mi>N</mi><mo>⊆</mo><mi>S</mi></math></span> and <span><math><mi>d</mi><mi>e</mi><mi>n</mi><mi>s</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>=</mo><mi>d</mi><mi>e</mi><mi>n</mi><mi>s</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. We also prove that metric spaces which are local retracts (respectively almost isometric local retracts) can be characterised in terms of a condition of extendability of Lipschitz functions (respectively almost isometries) between finite metric spaces. Various examples and counterexamples are exhibited.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S002212362400315X/pdfft?md5=12d32ad67a62e301f9eba5c798a10628&pid=1-s2.0-S002212362400315X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362400315X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400315X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
(Almost isometric) local retracts in metric spaces
We introduce the notion of (almost isometric) local retracts in metric space as a natural non-linear version of the concepts of ideals and almost isometric ideals in Banach spaces. We prove that given two metric spaces there always exists an almost isometric local retract with and . We also prove that metric spaces which are local retracts (respectively almost isometric local retracts) can be characterised in terms of a condition of extendability of Lipschitz functions (respectively almost isometries) between finite metric spaces. Various examples and counterexamples are exhibited.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis