向昨天学习:通过内容和群组动态预测加速器早期初创企业的成功情况

Q1 Business, Management and Accounting
Yisheng Li, Iman Zadehnoori, Ahmad Jowhar, Sean Wise, Andre Laplume, Morteza Zihayat
{"title":"向昨天学习:通过内容和群组动态预测加速器早期初创企业的成功情况","authors":"Yisheng Li,&nbsp;Iman Zadehnoori,&nbsp;Ahmad Jowhar,&nbsp;Sean Wise,&nbsp;Andre Laplume,&nbsp;Morteza Zihayat","doi":"10.1016/j.jbvi.2024.e00490","DOIUrl":null,"url":null,"abstract":"<div><p>As the demand for seed accelerators grows, so does the complexity of their evaluations of numerous startup applications. This paper introduces a novel two-phase data-driven framework for startup performance prediction. Phase 1 extracts founding team-level and venture-level features applicable to early-stage startups for success prediction. Phase 2 further engineers cohort-level features to predict the success of accelerator-admitted startups. We demonstrate the utility of our framework by leveraging machine learning methods coupled with real-world data of 35,647 startups (accelerator intakes: 763). We achieve high predictive accuracy and produce explainable results. We make methodological contributions to startup competitor detection and industry categorization. The key insight of our study is that member success largely depends on cohort-level features such as shared industries with different members and industry similarity to the accelerator's past portfolio.</p></div>","PeriodicalId":38078,"journal":{"name":"Journal of Business Venturing Insights","volume":"22 ","pages":"Article e00490"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning from Yesterday: Predicting early-stage startup success for accelerators through content and cohort dynamics\",\"authors\":\"Yisheng Li,&nbsp;Iman Zadehnoori,&nbsp;Ahmad Jowhar,&nbsp;Sean Wise,&nbsp;Andre Laplume,&nbsp;Morteza Zihayat\",\"doi\":\"10.1016/j.jbvi.2024.e00490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the demand for seed accelerators grows, so does the complexity of their evaluations of numerous startup applications. This paper introduces a novel two-phase data-driven framework for startup performance prediction. Phase 1 extracts founding team-level and venture-level features applicable to early-stage startups for success prediction. Phase 2 further engineers cohort-level features to predict the success of accelerator-admitted startups. We demonstrate the utility of our framework by leveraging machine learning methods coupled with real-world data of 35,647 startups (accelerator intakes: 763). We achieve high predictive accuracy and produce explainable results. We make methodological contributions to startup competitor detection and industry categorization. The key insight of our study is that member success largely depends on cohort-level features such as shared industries with different members and industry similarity to the accelerator's past portfolio.</p></div>\",\"PeriodicalId\":38078,\"journal\":{\"name\":\"Journal of Business Venturing Insights\",\"volume\":\"22 \",\"pages\":\"Article e00490\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business Venturing Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352673424000428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Venturing Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352673424000428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

摘要

随着对种子加速器需求的增长,对众多初创企业应用的评估也变得越来越复杂。本文介绍了一种新颖的两阶段初创企业业绩预测数据驱动框架。第一阶段提取适用于早期初创企业的创始团队级和风险企业级特征,用于成功预测。第二阶段则进一步提取团队层面的特征,以预测被加速器接纳的初创企业的成功率。我们利用机器学习方法,结合 35647 家初创企业(加速器入选企业:763 家)的真实数据,展示了我们的框架的实用性。我们实现了较高的预测准确性,并得出了可解释的结果。我们在初创企业竞争对手检测和行业分类方面做出了方法论上的贡献。我们研究的关键见解是,成员的成功在很大程度上取决于群组级特征,例如与不同成员共享的行业以及与加速器过去投资组合的行业相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning from Yesterday: Predicting early-stage startup success for accelerators through content and cohort dynamics

As the demand for seed accelerators grows, so does the complexity of their evaluations of numerous startup applications. This paper introduces a novel two-phase data-driven framework for startup performance prediction. Phase 1 extracts founding team-level and venture-level features applicable to early-stage startups for success prediction. Phase 2 further engineers cohort-level features to predict the success of accelerator-admitted startups. We demonstrate the utility of our framework by leveraging machine learning methods coupled with real-world data of 35,647 startups (accelerator intakes: 763). We achieve high predictive accuracy and produce explainable results. We make methodological contributions to startup competitor detection and industry categorization. The key insight of our study is that member success largely depends on cohort-level features such as shared industries with different members and industry similarity to the accelerator's past portfolio.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business Venturing Insights
Journal of Business Venturing Insights Business, Management and Accounting-Business and International Management
CiteScore
11.70
自引率
0.00%
发文量
62
审稿时长
28 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信