{"title":"作物水分胁迫指数利用特定生长阶段的非水分胁迫基线描述玉米在水分和盐分胁迫下的生产力特征","authors":"","doi":"10.1016/j.fcr.2024.109544","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>The use of non-destructive, continuous, and rapid canopy temperature (T<sub>c</sub>) indices for crop stress diagnosis is of significant importance for improving crop water productivity (WP). However, the comprehensive applicability of the crop water stress index (CWSI), grounded in T<sub>c</sub>, in diagnosing both single and combined water and salt stress, as well as characterizing physiological and growth traits, remains inadequately explored.</p></div><div><h3>Objective</h3><p>We aim to investigate the ability of CWSI to diagnose single and combined water and salt stress and to test whether a non-water stress baseline (NWSB) with or without growth stage and genotype differences influences CWSI to characterise maize leaf physiological and growth traits.</p></div><div><h3>Methods</h3><p>Here, we measured the T<sub>c</sub> using infrared radiation thermometers of two maize genotypes (XY335 and ZD958) under both single and combined water and salt stress over two growing seasons, compared the differences of NWSB in three growth stages, and established CWSI. Our analysis involved scrutinizing the differences in characterizing crop physiology and growth traits between CWSI calculated using NWSB with and without growth stage differentiations.</p></div><div><h3>Results</h3><p>Our findings indicated that T<sub>c</sub> is modulated by an interplay of soil water content, VPD, and soil salinity. The NWSB exhibited variations with both growth stage (<em>p</em><sub>slope</sub> < 0.001) and genotype (<em>p</em><sub>slope</sub> or <em>p</em><sub>intercept</sub> < 0.01). The CWSI can diagnose single and combined water and salt stress suffered by maize. Under no stress, and single and combined water and salt stress, CWSI was significantly correlated with stomatal conductance (R<sup>2</sup> ≥ 0.31, <em>p</em> < 0.1) and net photosynthetic rate (R<sup>2</sup> ≥ 0.38, <em>p</em> < 0.1), rather than with hydraulic traits. The mean CWSI across the entire growth period closely correlated with leaf area index (LAI), canopy photosynthetically active radiation interception, biomass, yield, and evapotranspiration across varying treatments (R<sup>2</sup> ≥ 0.54, <em>p</em> < 0.1). Contrary to CWSI derived from NWSB without growth stage variations, utilizing CWSI with growth stage distinctions better characterized physiological traits, while the former was more suitable for delineating yield and WP.</p></div><div><h3>Implications</h3><p>This research underscores the efficacy of CWSI for stress diagnosis and the evaluation of gas exchange and productivity in maize under both single and combined soil water-salt stress. This investigation significantly propels forward the implementation of crop-centric irrigation strategies aimed at optimizing water utilization efficiency.</p></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crop water stress index characterizes maize productivity under water and salt stress by using growth stage-specific non-water stress baselines\",\"authors\":\"\",\"doi\":\"10.1016/j.fcr.2024.109544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>The use of non-destructive, continuous, and rapid canopy temperature (T<sub>c</sub>) indices for crop stress diagnosis is of significant importance for improving crop water productivity (WP). However, the comprehensive applicability of the crop water stress index (CWSI), grounded in T<sub>c</sub>, in diagnosing both single and combined water and salt stress, as well as characterizing physiological and growth traits, remains inadequately explored.</p></div><div><h3>Objective</h3><p>We aim to investigate the ability of CWSI to diagnose single and combined water and salt stress and to test whether a non-water stress baseline (NWSB) with or without growth stage and genotype differences influences CWSI to characterise maize leaf physiological and growth traits.</p></div><div><h3>Methods</h3><p>Here, we measured the T<sub>c</sub> using infrared radiation thermometers of two maize genotypes (XY335 and ZD958) under both single and combined water and salt stress over two growing seasons, compared the differences of NWSB in three growth stages, and established CWSI. Our analysis involved scrutinizing the differences in characterizing crop physiology and growth traits between CWSI calculated using NWSB with and without growth stage differentiations.</p></div><div><h3>Results</h3><p>Our findings indicated that T<sub>c</sub> is modulated by an interplay of soil water content, VPD, and soil salinity. The NWSB exhibited variations with both growth stage (<em>p</em><sub>slope</sub> < 0.001) and genotype (<em>p</em><sub>slope</sub> or <em>p</em><sub>intercept</sub> < 0.01). The CWSI can diagnose single and combined water and salt stress suffered by maize. Under no stress, and single and combined water and salt stress, CWSI was significantly correlated with stomatal conductance (R<sup>2</sup> ≥ 0.31, <em>p</em> < 0.1) and net photosynthetic rate (R<sup>2</sup> ≥ 0.38, <em>p</em> < 0.1), rather than with hydraulic traits. The mean CWSI across the entire growth period closely correlated with leaf area index (LAI), canopy photosynthetically active radiation interception, biomass, yield, and evapotranspiration across varying treatments (R<sup>2</sup> ≥ 0.54, <em>p</em> < 0.1). Contrary to CWSI derived from NWSB without growth stage variations, utilizing CWSI with growth stage distinctions better characterized physiological traits, while the former was more suitable for delineating yield and WP.</p></div><div><h3>Implications</h3><p>This research underscores the efficacy of CWSI for stress diagnosis and the evaluation of gas exchange and productivity in maize under both single and combined soil water-salt stress. This investigation significantly propels forward the implementation of crop-centric irrigation strategies aimed at optimizing water utilization efficiency.</p></div>\",\"PeriodicalId\":12143,\"journal\":{\"name\":\"Field Crops Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Field Crops Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378429024002971\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429024002971","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Crop water stress index characterizes maize productivity under water and salt stress by using growth stage-specific non-water stress baselines
Context
The use of non-destructive, continuous, and rapid canopy temperature (Tc) indices for crop stress diagnosis is of significant importance for improving crop water productivity (WP). However, the comprehensive applicability of the crop water stress index (CWSI), grounded in Tc, in diagnosing both single and combined water and salt stress, as well as characterizing physiological and growth traits, remains inadequately explored.
Objective
We aim to investigate the ability of CWSI to diagnose single and combined water and salt stress and to test whether a non-water stress baseline (NWSB) with or without growth stage and genotype differences influences CWSI to characterise maize leaf physiological and growth traits.
Methods
Here, we measured the Tc using infrared radiation thermometers of two maize genotypes (XY335 and ZD958) under both single and combined water and salt stress over two growing seasons, compared the differences of NWSB in three growth stages, and established CWSI. Our analysis involved scrutinizing the differences in characterizing crop physiology and growth traits between CWSI calculated using NWSB with and without growth stage differentiations.
Results
Our findings indicated that Tc is modulated by an interplay of soil water content, VPD, and soil salinity. The NWSB exhibited variations with both growth stage (pslope < 0.001) and genotype (pslope or pintercept < 0.01). The CWSI can diagnose single and combined water and salt stress suffered by maize. Under no stress, and single and combined water and salt stress, CWSI was significantly correlated with stomatal conductance (R2 ≥ 0.31, p < 0.1) and net photosynthetic rate (R2 ≥ 0.38, p < 0.1), rather than with hydraulic traits. The mean CWSI across the entire growth period closely correlated with leaf area index (LAI), canopy photosynthetically active radiation interception, biomass, yield, and evapotranspiration across varying treatments (R2 ≥ 0.54, p < 0.1). Contrary to CWSI derived from NWSB without growth stage variations, utilizing CWSI with growth stage distinctions better characterized physiological traits, while the former was more suitable for delineating yield and WP.
Implications
This research underscores the efficacy of CWSI for stress diagnosis and the evaluation of gas exchange and productivity in maize under both single and combined soil water-salt stress. This investigation significantly propels forward the implementation of crop-centric irrigation strategies aimed at optimizing water utilization efficiency.
期刊介绍:
Field Crops Research is an international journal publishing scientific articles on:
√ experimental and modelling research at field, farm and landscape levels
on temperate and tropical crops and cropping systems,
with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.