列群上狄拉克算子的定点公式

IF 1.7 2区 数学 Q1 MATHEMATICS
Ahmad Reza Haj Saeedi Sadegh , Shiqi Liu , Yiannis Loizides , Jesus Sanchez
{"title":"列群上狄拉克算子的定点公式","authors":"Ahmad Reza Haj Saeedi Sadegh ,&nbsp;Shiqi Liu ,&nbsp;Yiannis Loizides ,&nbsp;Jesus Sanchez","doi":"10.1016/j.jfa.2024.110624","DOIUrl":null,"url":null,"abstract":"<div><p>We study equivariant families of Dirac operators on the source fibers of a Lie groupoid with a closed space of units and equipped with an action of an auxiliary compact Lie group. We use the Getzler rescaling method to derive a fixed-point formula for the pairing of a trace with the K-theory class of such a family. For the pair groupoid of a closed manifold, our formula reduces to the standard fixed-point formula for the equivariant index of a Dirac operator. Further examples involve foliations and manifolds equipped with a normal crossing divisor.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fixed-point formula for Dirac operators on Lie groupoids\",\"authors\":\"Ahmad Reza Haj Saeedi Sadegh ,&nbsp;Shiqi Liu ,&nbsp;Yiannis Loizides ,&nbsp;Jesus Sanchez\",\"doi\":\"10.1016/j.jfa.2024.110624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study equivariant families of Dirac operators on the source fibers of a Lie groupoid with a closed space of units and equipped with an action of an auxiliary compact Lie group. We use the Getzler rescaling method to derive a fixed-point formula for the pairing of a trace with the K-theory class of such a family. For the pair groupoid of a closed manifold, our formula reduces to the standard fixed-point formula for the equivariant index of a Dirac operator. Further examples involve foliations and manifolds equipped with a normal crossing divisor.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003124\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003124","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是具有封闭单元空间并配有辅助紧凑李群作用的李群源纤维上的狄拉克算子等变族。我们利用格茨勒重定标法推导出了这样一个族的迹与 K 理论类配对的定点公式。对于封闭流形的对群,我们的公式简化为狄拉克算子等变指数的标准定点公式。更多的例子涉及叶状流形和配有正交除数的流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fixed-point formula for Dirac operators on Lie groupoids

We study equivariant families of Dirac operators on the source fibers of a Lie groupoid with a closed space of units and equipped with an action of an auxiliary compact Lie group. We use the Getzler rescaling method to derive a fixed-point formula for the pairing of a trace with the K-theory class of such a family. For the pair groupoid of a closed manifold, our formula reduces to the standard fixed-point formula for the equivariant index of a Dirac operator. Further examples involve foliations and manifolds equipped with a normal crossing divisor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信