致密木材的非常规疲劳失效

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bo Chen , Qiongyu Chen , Ulrich H. Leiste , Yu Liu , Taotao Meng , Jiaqi Dai , Amy Gong , Liangbing Hu , William L. Fourney , Teng Li
{"title":"致密木材的非常规疲劳失效","authors":"Bo Chen ,&nbsp;Qiongyu Chen ,&nbsp;Ulrich H. Leiste ,&nbsp;Yu Liu ,&nbsp;Taotao Meng ,&nbsp;Jiaqi Dai ,&nbsp;Amy Gong ,&nbsp;Liangbing Hu ,&nbsp;William L. Fourney ,&nbsp;Teng Li","doi":"10.1016/j.eml.2024.102218","DOIUrl":null,"url":null,"abstract":"<div><p>Fatigue is a critical failure mechanism in various materials, often leading to catastrophic consequences. Designing materials with non-catastrophic fatigue failure is desirable yet challenging. This work presents the remarkable fatigue behavior of densified wood, exhibiting both a higher fatigue strength and non-catastrophic failure compared to natural wood. The improved bonding between wood fibers, primarily through hydrogen bonds, enables robust structural integrity even after fatigue failure. This mechanistic understanding offers insights for achieving non-catastrophic fatigue failure in diverse materials, presenting a fundamental principle for material design with broad implications.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"71 ","pages":"Article 102218"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconventional fatigue failure of densified wood\",\"authors\":\"Bo Chen ,&nbsp;Qiongyu Chen ,&nbsp;Ulrich H. Leiste ,&nbsp;Yu Liu ,&nbsp;Taotao Meng ,&nbsp;Jiaqi Dai ,&nbsp;Amy Gong ,&nbsp;Liangbing Hu ,&nbsp;William L. Fourney ,&nbsp;Teng Li\",\"doi\":\"10.1016/j.eml.2024.102218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fatigue is a critical failure mechanism in various materials, often leading to catastrophic consequences. Designing materials with non-catastrophic fatigue failure is desirable yet challenging. This work presents the remarkable fatigue behavior of densified wood, exhibiting both a higher fatigue strength and non-catastrophic failure compared to natural wood. The improved bonding between wood fibers, primarily through hydrogen bonds, enables robust structural integrity even after fatigue failure. This mechanistic understanding offers insights for achieving non-catastrophic fatigue failure in diverse materials, presenting a fundamental principle for material design with broad implications.</p></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"71 \",\"pages\":\"Article 102218\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431624000981\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624000981","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

疲劳是各种材料的关键失效机制,往往会导致灾难性后果。设计具有非灾难性疲劳失效的材料是可取的,但也是具有挑战性的。与天然木材相比,这项工作展示了致密化木材的显著疲劳行为,它同时表现出更高的疲劳强度和非灾难性失效。木纤维之间主要通过氢键提高了粘合力,即使在疲劳失效后也能保持结构的稳健性。对这一机理的理解为在各种材料中实现非灾难性疲劳失效提供了启示,为材料设计提供了一个具有广泛影响的基本原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconventional fatigue failure of densified wood

Fatigue is a critical failure mechanism in various materials, often leading to catastrophic consequences. Designing materials with non-catastrophic fatigue failure is desirable yet challenging. This work presents the remarkable fatigue behavior of densified wood, exhibiting both a higher fatigue strength and non-catastrophic failure compared to natural wood. The improved bonding between wood fibers, primarily through hydrogen bonds, enables robust structural integrity even after fatigue failure. This mechanistic understanding offers insights for achieving non-catastrophic fatigue failure in diverse materials, presenting a fundamental principle for material design with broad implications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信