{"title":"长期氮添加对根部氮获取策略的影响:两个温带树种 19 年实验的启示","authors":"","doi":"10.1016/j.foreco.2024.122220","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogen (N) serves as the primary limiting nutrient for plant growth in the majority of terrestrial ecosystems. However, the effect of long-term N addition on root N acquisition, in particular the seasonal dynamics, is still not well understood. In a 19-year N addition experiment on plantations of ectomycorrhizal tree species <em>Larix gmelinii</em> (larch) and arbuscular mycorrhizal tree species <em>Fraxinus mandshurica</em> (ash), we determined root morphological, chemical and mycorrhizal traits, as well as soil properties. Concurrently, we used a field isotopic hydroponic method to measure root uptake rates of NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, and glycine in the early, mid and late growing season. Following N addition, mycorrhizal colonization rates in both species were reduced in early and late growing season. Root tissue density was reduced but specific root length and area were increased in ash under N addition across growing seasons, however, no significant differences in these traits were found in larch. Under N addition, both species showed lower uptake rates of all N forms and the total N than the controls throughout the growing season, except for the glycine-uptake of larch in early growing season. N addition did not modify the N-uptake preference in both species, but the contributions of specific N form to the total N varied with seasons. Collectively, referring to the framework of “root economics space”, these two species particularly ash showed greater reliance on the “do-it-yourself” strategy for N acquisition under long-term N addition, although the degree of which somewhat varied with season. Seasonal dynamics in root N-uptake rates of ash were mainly related to soil temperature and moisture, rather than soil N properties, showing less direct impact of N addition. Our findings provide deep insights into the effect of N deposition on root N acquisition strategy and related functions of forest ecosystem.</p></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of long-term nitrogen addition on root nitrogen acquisition strategy: Insights from a 19-year experiment in two temperate tree species\",\"authors\":\"\",\"doi\":\"10.1016/j.foreco.2024.122220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitrogen (N) serves as the primary limiting nutrient for plant growth in the majority of terrestrial ecosystems. However, the effect of long-term N addition on root N acquisition, in particular the seasonal dynamics, is still not well understood. In a 19-year N addition experiment on plantations of ectomycorrhizal tree species <em>Larix gmelinii</em> (larch) and arbuscular mycorrhizal tree species <em>Fraxinus mandshurica</em> (ash), we determined root morphological, chemical and mycorrhizal traits, as well as soil properties. Concurrently, we used a field isotopic hydroponic method to measure root uptake rates of NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, and glycine in the early, mid and late growing season. Following N addition, mycorrhizal colonization rates in both species were reduced in early and late growing season. Root tissue density was reduced but specific root length and area were increased in ash under N addition across growing seasons, however, no significant differences in these traits were found in larch. Under N addition, both species showed lower uptake rates of all N forms and the total N than the controls throughout the growing season, except for the glycine-uptake of larch in early growing season. N addition did not modify the N-uptake preference in both species, but the contributions of specific N form to the total N varied with seasons. Collectively, referring to the framework of “root economics space”, these two species particularly ash showed greater reliance on the “do-it-yourself” strategy for N acquisition under long-term N addition, although the degree of which somewhat varied with season. Seasonal dynamics in root N-uptake rates of ash were mainly related to soil temperature and moisture, rather than soil N properties, showing less direct impact of N addition. Our findings provide deep insights into the effect of N deposition on root N acquisition strategy and related functions of forest ecosystem.</p></div>\",\"PeriodicalId\":12350,\"journal\":{\"name\":\"Forest Ecology and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecology and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378112724005322\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112724005322","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Effects of long-term nitrogen addition on root nitrogen acquisition strategy: Insights from a 19-year experiment in two temperate tree species
Nitrogen (N) serves as the primary limiting nutrient for plant growth in the majority of terrestrial ecosystems. However, the effect of long-term N addition on root N acquisition, in particular the seasonal dynamics, is still not well understood. In a 19-year N addition experiment on plantations of ectomycorrhizal tree species Larix gmelinii (larch) and arbuscular mycorrhizal tree species Fraxinus mandshurica (ash), we determined root morphological, chemical and mycorrhizal traits, as well as soil properties. Concurrently, we used a field isotopic hydroponic method to measure root uptake rates of NH4+, NO3-, and glycine in the early, mid and late growing season. Following N addition, mycorrhizal colonization rates in both species were reduced in early and late growing season. Root tissue density was reduced but specific root length and area were increased in ash under N addition across growing seasons, however, no significant differences in these traits were found in larch. Under N addition, both species showed lower uptake rates of all N forms and the total N than the controls throughout the growing season, except for the glycine-uptake of larch in early growing season. N addition did not modify the N-uptake preference in both species, but the contributions of specific N form to the total N varied with seasons. Collectively, referring to the framework of “root economics space”, these two species particularly ash showed greater reliance on the “do-it-yourself” strategy for N acquisition under long-term N addition, although the degree of which somewhat varied with season. Seasonal dynamics in root N-uptake rates of ash were mainly related to soil temperature and moisture, rather than soil N properties, showing less direct impact of N addition. Our findings provide deep insights into the effect of N deposition on root N acquisition strategy and related functions of forest ecosystem.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.