彼得森舒伯特微积分的正向性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rebecca Goldin , Leonardo Mihalcea , Rahul Singh
{"title":"彼得森舒伯特微积分的正向性","authors":"Rebecca Goldin ,&nbsp;Leonardo Mihalcea ,&nbsp;Rahul Singh","doi":"10.1016/j.aim.2024.109879","DOIUrl":null,"url":null,"abstract":"<div><p>The Peterson variety is a subvariety of the flag manifold <span><math><mi>G</mi><mo>/</mo><mi>B</mi></math></span> equipped with an action of a one-dimensional torus, and a torus invariant paving by affine cells, called Peterson cells. We prove that the equivariant pull-backs of Schubert classes indexed by arbitrary Coxeter elements are dual (up to an intersection multiplicity) to the fundamental classes of Peterson cell closures. Dividing these classes by the intersection multiplicities yields a <span><math><mi>Z</mi></math></span>-basis for the equivariant cohomology of the Peterson variety. We prove several properties of this basis, including a Graham positivity property for its structure constants, and stability with respect to inclusion in a larger Peterson variety. We also find formulae for intersection multiplicities with Peterson classes. This explains geometrically, in arbitrary Lie type, recent positivity statements proved in type A by Goldin and Gorbutt.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positivity of Peterson Schubert calculus\",\"authors\":\"Rebecca Goldin ,&nbsp;Leonardo Mihalcea ,&nbsp;Rahul Singh\",\"doi\":\"10.1016/j.aim.2024.109879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Peterson variety is a subvariety of the flag manifold <span><math><mi>G</mi><mo>/</mo><mi>B</mi></math></span> equipped with an action of a one-dimensional torus, and a torus invariant paving by affine cells, called Peterson cells. We prove that the equivariant pull-backs of Schubert classes indexed by arbitrary Coxeter elements are dual (up to an intersection multiplicity) to the fundamental classes of Peterson cell closures. Dividing these classes by the intersection multiplicities yields a <span><math><mi>Z</mi></math></span>-basis for the equivariant cohomology of the Peterson variety. We prove several properties of this basis, including a Graham positivity property for its structure constants, and stability with respect to inclusion in a larger Peterson variety. We also find formulae for intersection multiplicities with Peterson classes. This explains geometrically, in arbitrary Lie type, recent positivity statements proved in type A by Goldin and Gorbutt.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003943\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003943","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

彼得森变种是旗流形 G/B 的一个子变种,具有一维环的作用和由仿射单元(称为彼得森单元)铺成的环不变量。我们证明,以任意考克赛特元素为索引的舒伯特类的等变拉回与彼得森单元闭包的基本类是对偶的(直到交乘)。将这些类除以交乘,就得到了彼得森变化等变同调的 Z 基础。我们证明了这个基础的几个性质,包括其结构常数的格雷厄姆正性性质,以及包含在更大的彼得森变化中的稳定性。我们还找到了与彼得森类的交乘公式。这从几何学角度解释了戈尔丁和戈尔布特最近在任意李类型中证明的 A 型正性声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positivity of Peterson Schubert calculus

The Peterson variety is a subvariety of the flag manifold G/B equipped with an action of a one-dimensional torus, and a torus invariant paving by affine cells, called Peterson cells. We prove that the equivariant pull-backs of Schubert classes indexed by arbitrary Coxeter elements are dual (up to an intersection multiplicity) to the fundamental classes of Peterson cell closures. Dividing these classes by the intersection multiplicities yields a Z-basis for the equivariant cohomology of the Peterson variety. We prove several properties of this basis, including a Graham positivity property for its structure constants, and stability with respect to inclusion in a larger Peterson variety. We also find formulae for intersection multiplicities with Peterson classes. This explains geometrically, in arbitrary Lie type, recent positivity statements proved in type A by Goldin and Gorbutt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信