用于后向随机微分方程的新型多步预测器-校正器方案

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiang Han , Shaolin Ji
{"title":"用于后向随机微分方程的新型多步预测器-校正器方案","authors":"Qiang Han ,&nbsp;Shaolin Ji","doi":"10.1016/j.cnsns.2024.108269","DOIUrl":null,"url":null,"abstract":"<div><p>Novel multi-step predictor–corrector numerical schemes have been derived for approximating decoupled forward–backward stochastic differential equations. The stability and high order rate of convergence of the proposed schemes are rigorously proved. We also present a sufficient and necessary condition for the stability of the schemes. Numerical experiments are given to illustrate the stability and convergence rates of the proposed methods.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel multi-step predictor–corrector schemes for backward stochastic differential equations\",\"authors\":\"Qiang Han ,&nbsp;Shaolin Ji\",\"doi\":\"10.1016/j.cnsns.2024.108269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Novel multi-step predictor–corrector numerical schemes have been derived for approximating decoupled forward–backward stochastic differential equations. The stability and high order rate of convergence of the proposed schemes are rigorously proved. We also present a sufficient and necessary condition for the stability of the schemes. Numerical experiments are given to illustrate the stability and convergence rates of the proposed methods.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424004544\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424004544","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为近似解耦前向-后向随机微分方程推导了新的多步预测器-校正器数值方案。我们严格证明了所提方案的稳定性和高阶收敛率。我们还提出了方案稳定性的充分必要条件。我们还给出了数值实验来说明所提方法的稳定性和收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel multi-step predictor–corrector schemes for backward stochastic differential equations

Novel multi-step predictor–corrector numerical schemes have been derived for approximating decoupled forward–backward stochastic differential equations. The stability and high order rate of convergence of the proposed schemes are rigorously proved. We also present a sufficient and necessary condition for the stability of the schemes. Numerical experiments are given to illustrate the stability and convergence rates of the proposed methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信